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CHAPTER V. EXTENDING THE DEFINITE INTEGRAL

§ V.1. DEFINITE INTEGRALS WITH PARAMETERS

We consider that the integral calculus for the functions of one real
variable is known. Here we include the indefinite integrals (also called
primitives or anti-derivatives) as well as the definite integrals. Similarly,
we consider that the basic methods of calculating (exactly and
approximately) integrals are known.

The purpose of this paragraph is to study an extension of the notion of
definite integral in the sense that beyond the variable of integration there
exists another variable also called parameter.
1.1. Definition. Let us consider an interval A R , I = [a, b]  R and

f : A x IR . If for each x A (x is called parameter), function t  f(x, t)

is integrable on [a, b], then we say that F : A  R, defined by

F(x) = 
b

a

f(x, t)dt

is a definite integral with parameter (between fixed limits a and b).
More generally, if instead of a, b we consider two functions

φ, ψ : A  [a, b] such that φ(x)   ψ(x) for all x  A, and the function
t  f(x, t) is integrable on the interval [φ(x), ψ(x)] for each x  A, then the
function

G(x) = 
)(

)(

x

x





f(x, t)dt

is called definite integral with parameter x (between variable limits).
The integrals with variable limits may be reduced to integrals with

constant limits by changing the variable of integration:
1.2. Lemma. In the conditions of the above definition, we have:

G(x) = [ψ(x)  φ(x)] 
1

0

f(x, φ(x) + θ[ψ(x)  φ(x)])d θ .

Proof. In the integral G(x) we make the change t = φ(x) + θ [ψ(x)  φ(x)],

for which
d

dt
= ψ(x)  φ(x). }

Relative to F and G we'll study the properties concerning continuity,
derivability and integrability in respect to the parameter.
1.3. Theorem. If f : A x I  R is continuous on A x I, then F : A  R is

continuous on A.
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Proof. If x0  A, then either x0 Å, or x0 is an end-point of A. In any case
there exists η > 0 such that 

Kη = {(x, t) R2 : | x  x0|  η , x A, t[a, b]}

is a compact part of A x I. Since f is continuous on A x I, it will be
uniformly continuous on Kη , i.e. for any ε > 0 there exists δ > 0 such that

| f(x', t')  f(x", t") | <
)(2 ab 



whenever (x', t'), (x", t")  Kη and d((x', t'), (x", t")) < δ.
Consequently, for all x  A for which | x  x0 | < min { η , δ } we have 

| F(x)  F(x0) |  
b

a

| f(x, t)  f(x0, t)|dt 
)(2 ab 


(b a ) < ε,

which means that F is continuous at x0 . }

1.4. Corollary. If the function f : A x I  R is continuous on A x I, and

φ, ψ : A  [a, b] are continuous on A, then G : A  R is continuous on A.

Proof. Function g : A x [0, 1]  R, defined by

g(x, θ) = f(x, φ(x) + θ[ψ(x)  φ(x)]),
which was used in lemma 1.2, is continuous on A x [0, 1], hence we can
apply theorem 1.3 and lemma 1.2. }

1.5. Theorem. Let A  R be an arbitrary interval, I = [a, b]  R, and let

us note f : A x I  R. If f is continuous on A x I, and it has a continuous

partial derivative
x

f




, then F  CR

1(A), and F'(x) = 
b

a
x

f




(x, t)dt.

Proof. We have to show that at each x0  A, there exists

 









b

a
xx

dttx
x

f

xx

xFxF
),(

)()(
lim 0

0

0

0

.

For this purpose we consider the following helpful function

h(x, t) =




















00

0
0

0

xxif),(

xxif
),(),(

tx
x

f

xx

txftxf

On the hypothesis it is clear that h is continuous on A x I, hence we can
use theorem 1.3 for the function

H(x) = 
b

a

h(x, t)dt = 
b

a 0

0

0

0 )()(),(),(

xx

xFxF
dt

xx

txftxf









.
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On this way, the equality H(x0) =
0

lim
xx

H(x) shows that F is derivable at

x0, and

F'(x0) = 
b

a
x

f




(x0, t)dt.

The continuity of F' is a consequence of the continuity of
x

f




, by virtue

of the same theorem 1.3. }

1.6. Corollary. If, in addition to the hypothesis of the above theorem, we
have φ, ψ  CR

1(A), then G  CR
1(A) and the equality

G'(x) = 
)(

)(

x

x




x

f




(x, t)dt + f(x, ψ(x)) ψ'(x)  f(x, φ(x)) φ'(x)

holds at any x  A.
Proof. Let us consider a new function L : A x I x I  R, expressed by

L(x,u,v) = 
v

u

f(x, t)dt . According to the above theorem, for fixed u and v

we have  






v

u

dttx
x

f
vux

x

L
),(),,( . On the other hand, the general properties

of a primitive lead to
u

L




(x, u, v) = f(x, u) and

v

L




(x, u, v) = f(x, v).

Because all these partial derivatives are continuous, L is differentiable on
A x I x I. Applying the rule of deriving a composite function in the case of
G(x) = L(x, φ(x), ψ(x)), we obtain the announced formula. The continuity
of G' follows by using theorem 1.3. }

1.7. Theorem. If f : A x I  R is continuous on A x I , then F : A  R is

integrable on any compact [α, β]  A, and

  























b

a

dtdxtxfdxxF ),()( .

Proof. According to theorem 1.3, F is continuous on [α, β], hence it is also
integrable on this interval. It is well known that the function

Ф(y) = 
y



F(x)dx

is a primitive of F on [α, β]. We will show that
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Ф(y) =  












b

a

y

dtdxtxf



),( .

For this purpose let us note U(y, t) = 
y



f(x, t)dx and (y) = 
b

a

U(y, t)dt.

Then,
y

U




(y, t) = f(y, t), hence according to theorem 1.5, we have

'(y) = 
b

a

f(y,t)dt. Consequently, the equalities '(y) = F(y) = Ф'(y) hold

at any y  [α, β], hence Ф(y)   (y) = c, where c is a constant. Because
Ф(α) =  (α) = 0, we obtain c = 0, i.e. Ф = . In particular, Ф(β) =  (β)
express the required equality. }

1.8. Corollary. If, in addition to the conditions in the above theorem,
the functions φ, ψ : A [a, b] are continuous on A, then

  
























1

0

),()( ddxxgdxxG

where g(x, θ) = f(x, φ(x) + θ[ψ(x)  φ(x) ]) [ψ(x)  φ(x) ] (as in corollary 4).

Proof. According to Lemma 1.2, we have G(x) = 
1

0

),(  dxg , so it remains

to use theorem 1.7. }

1.9. Remark. The formulas established in the above theorems and their
corollaries (especially that which refers to derivation and integration) are
frequently useful in practice for calculating integrals (see the problems at
the end of the paragraph). In particular, theorem 1.7 gives the conditions on
which we can change the order in an iterated integral, i.e.

  

































dtdxtxfdxdttxf
b

a

b

a

),(),( .
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PROBLEMS § V.1

1. Calculate dttx 
2/

0

22 )sinln(


, where x > 1.

Hint. Denoting the integral by F(x), we obtain F'(x) = 


2/

0
22 sin

2


dt
tx

x
.

Using the substitution tg
2

t
= u, we obtain F'(x) =

12 x


, and so

F(x) = π ln(x + 12 x ) + c. In order to find c, we write

c = F(x)  π ln(x + 12 x ) =

=  



























2/

0
2

2
2 sin

1lnln


dt
x

t
x πln(x + 12 x )=

= 


















2/

0

2

2

2 1
ln

sin
1ln




x

xx
dt

x

t
.

Taking here x  , it follows c =  πln 2.

2. Calculate I = 
1

0

f(x)dx, where f : [0, 1]  R has the values

f(x) =













1x0,xif0

0(0,1),xif
ln




x

xx

Hint. Notice that f(x) = 




dtxt at any x[0, 1), and at the end point 1, there

exists  


)(lim
1

xf
x

, so only at this point f differs form a continuous

function on [0, 1]. Consequently I = 
1

0

[ 




dtxt ]dx =   





















1

1
ln

1

0

dtdxxt .

3. Calculate






 tgx

xt

x
xt

x
dte

dte

0

sin

0

0 2

2

lim .
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Hint. This is a
0

0
indetermination; in order to use L'Hospital rule we need

the derivatives relative to x, which is a parameter in the upper limits of
integrals, so the limit reduces to

1

)(cos

cos

lim

0

22

sin

0

2sin

0 22

22












 tgx

xtxxtg

x
xtxx

x
dtetxe

dtetxe

.

4. Calculate I =  



0
cos xba

dx
, where 0 < | b |< a, and deduce the values of

I = 



0

cos xba

dx
, K = 





0
2)cos(

cos
dx

xba

x
and L =  



0

)cosln( dxxba .

Hint. The substitution tg
2

x
= t is not possible in I because [0, π) is carried

into [0,  ). Since the integral is continuous on R, we have

I =  

l

l xba

dx

0
cos

lim


,

and this last integral can be calculated using the mentioned substitution.
More exactly,

  




















l

l
tg

l
tg

ba

ba
arctg

babatba

dt

xba

dx

0

2

0
222 2

2

)(
2

cos

hence I =
22 ba 


. To obtain K , we derive I relative to b. Finally,

a

L




=I.

5. Calculate I = 


1

0
21

dx
xx

arctgx
by deriving I(y) = 



1

0
21

dx
xx

arctgxy
, y0.

Hint. Substitution x = cos θ gives

I'(y) =  





1

0

2/

0
22222 cos11)1(







y

d

xyx

dx
.

Because the substitution tg θ = t carries [0,
2


) into [0,  ), and the

substitution tg
2


= t leads to a complicated calculation, we consider
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I'(y)= 


l

l y

d

0
22

2
cos1

lim





.

If we replace tg θ = t in this last integral, then we obtain




l

y

d

0
22 cos1 


= 






tgl

y

tgl
arctg

yty

dt

0
2222

11

1

1
.

Consequently I'(y) =
2


21

1

y
, hence I(y) =

2


ln(y + 21 y ) + c.

Because I(0) = 0 it follows that c = 0, hence I = I(1) =
2


ln(1+ 2 ) .

6. Calculate I = 


1

0
21

dx
xx

arctgx
using the formula 




1

0
221 yx

dy

x

arctgx
.

Hint. Changing the order of integration we obtain

I =   

































1

0

1

0

1

0
222

1

0
222 1)1(11

1
dy

xyx

dx
dx

yx

dy

x

so the problem reduces to I'(y) from problem 5.

7. Calculate K=  


2

0
sinsin

sin
ln



x

dx

xba

xba
, a > b > 0.

Hint. Using the formula 








1

0
2222 sin

2
sin

sin
ln

sin

1

xyba

dy
ab

xba

xba

x
we

obtain

K =   



































2

0

1

0

2

0
2222

1

0
2222

.
sin

2
sin

2

 

dy
xyba

dx
abdx

xyba

dy
ab

Since
222

2

0
2222

2sin ybaaxyba

dx











it follows that

K =  


1

0
222

arcsin
a

b

yba

dy
b  .
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8. Show that In+1(a) =
na2

1
I'n(a), where In(a) = 



1

0
22 )( nax

dx
, n  N*,

a  0. Using this result, calculate 


1

0
32 )1( x

dx
.

Hint. Derive In(a) relative to a .

9. Use Theorem 1.7 to evaluate I = 
1

0

)( dxxf , where
















10,0

10,)sin(ln
ln)(

xorxif

xandxifx
x

xx
xf



and  > 0,  > 0.
Hint. Introduce a parameter t and remark that

I =   












1

0

)sin(ln dxxdtxt




.

Change the order of integration to obtain

I =  














dtdxxxt
1

0

)sin(ln = 






2)1(1 t

dt
.

The result is I =
)1)(1(1 






arctg .
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§V.2. IMPROPER INTEGRALS

In the construction of the definite integral, noted 
b

a
dttf )( , we have used

two conditions which allow us to write the integral sums, namely:
(i) a and b are finite (i.e. different from +  );
(ii) f is bounded on [a, b], where it is defined.

There are still many practical problems, which lead to integrals of
functions not satisfying these conditions. Even definite integrals reduce
sometimes to such "more general" integrals, as for example when changing

the variables by tg
2

x
= t, the interval [0, π] is carried into [0,  ].

The aim of this paragraph is to extend the notion of integral in the case
when these conditions are no longer satisfied.
2.1. Definition. The case when b =  . If f : [a,  )  R is integrable on

[a, β] for all β > a, and there exists L = 





a

dttf )(lim , then we may say that

f is improperly integrable on [a,  ), and L is the improper integral of f on

[a,  ). In this case we note 


a

dttf )( = 





a

dttf )(lim , and we say that the

improper integral is convergent.
Similarly we discuss the case when a =  .
The case when f is unbounded at b. Let f : [a, b)  R be unbounded in

the neighborhood of b, in the sense that for arbitrary δ > 0 and M > 0 there
exists t  (b  δ, b) such that f (t) > M. If f is integrable on [a, β ] for all

a < β < b, and there exists L = 





a

b
dttf )(lim , then we say that f is

improperly integrable on [a, b), and L is called improper integral of f on

[a, b). If L exists, we note 
b

a

dttf )( = 





a

b
dttf )(lim , and we say that the

improper integral is convergent.
We similarly treat the functions which are unbounded at a .

2.2. Remarks. a) In practice we often deal with combinations of the above
simple situations, as for example

  











R

,)(lim)()(
.

dttfdttfdttf
not
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dttfdttf

b
a

b

a

)(lim)( , where a < α < β <b.

The integral 
b

a

dttf )( can be improper because f is unbounded at some

point c  (a, b), in which case we define


b

a

dttf )( =  















a

b

c
c

c
c

dttfdttf )(lim)(lim .

b) From the geometrical point of view, considering improper integrals may
be interpreted as measuring areas of unbounded subsets of the plane. The
existence of the above considered limits shows that we can speak of the
area of an unbounded set, at least for sub-graphs of some real functions.
c) In spite of the diversity of types of improper integrals, there is a simple,
but essential common feature, namely that the integration is realized on
non-compact sets. In fact, a compact set in R is bounded and closed, hence

[a,  ), ( , b], ( ,+ ) are non-compact because they are not bounded,
while [a, b), (a, b], etc. are non-compact because of non-closeness.
Obviously, other combinations like (a,  ), ( , c)  (c, b], etc. are
possible. Because any improper integral is defined by a limiting process,
when proving some property of such integrals it is sufficient to consider
only one of the possible cases.

2.3. Examples. a) The integral I(λ) = 


1
t

dt
(λ  R) is convergent for λ > 1,

when I(λ) = (λ  1)1, and divergent for λ  1. In fact, according to the

above definition, I(λ) = 








1

lim dtt , where


 



















1

1

1.ifln

1if)1(
1

1

dtt

Finally, it remains to remember that















 


1.if

1if1

1if0

lim 1
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b) The integral I(μ) =  

1

0
t

dt
(μ > 0) is convergent for μ < 1, when it

equals I(μ) = (1  μ)1, and it is divergent for μ  1.
Figures V.2.1. a), respectively b), suggest how to interpret I(λ) and I(μ) as

areas of some sub-graphs (hatched portions).

Fig. V.2.1

The usual properties of the definite integrals also hold for improper
integrals, namely:
2.4. Proposition. a) The improper integral is a linear functional on the
space of all improperly integrable functions, i.e. if f, g : [a, b)  R are

improperly integrable on [a, b), and λ, μ  R, then λf + μg is improperly

integrable on [a, b) and we have:

  
b

a

b

a

b

a

dttgdttfdttgf .)()())(( 

b) The improper integral is additive relative to the interval, i.e.


b

a

dttf )( = 
c

a

dttf )( + 
b

c

dttf )( .

c) The improper integral is dependent on the order of the interval, namely


b

a

dttf )( =  
a

b

dttf )( .

2.5. Theorem. (Leibniz-Newton formula) Let f : [a, b)  R be (properly)

integrable on any compact [a, β ]included in [a, b), and F be the primitive
of f on [a, b). Then a necessary and sufficient condition for f to be
improperly integrable on [a, b) is to exist the finite limit of F at b. In this
case we have:









0 t









0 t

a) b)
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b

a

dttf )( = )()(lim aFF
b




.

2.6. Theorem. (Integration by parts) If f, g satisfy the conditions:
(i) f, g  C1

R([a, b])

(ii) there exists and is finite ))((lim xfg

bx
bx




(iii) 
b

a

dttgtf )(')( is convergent

then 
b

a

dttgtf )()(' is convergent too, and we have


b

a

dttgtf )()(' = ))((lim xfg

bx
bx




 f(a)g(a)  
b

a

dttgtf )(')( .

2.7. Theorem. (Changing the variable) Let f : [a, b)  R be continuous on

[a, b), and let φ : [a', b')  [a, b) be of class C1
R([a', b']), such that φ(a') = a

and b

b
b






)(lim

'
'

. If 
b

a

dttf )( is convergent, then the integral


'

'

)('))((
b

a

df 

is also convergent, and we have


'

'

)('))((
b

a

df  = 
b

a

dttf )( .

The above properties (especially theorems 2.5  2.7) are useful in the
cases when primitives are available. If the improper integral can't be
calculated using the primitives it is still important to study the convergence.
For developing such a study we have several tests of convergence, as
follows:
2.8. Theorem. (Cauchy's general test) Let f : [a, b)  R be (properly)

integrable on any [a, β]  [a, b). Then 
b

a

dttf )( is convergent iff for every

ε > 0 there exists δ > 0 such that b', b" (b  δ, b) implies 
"

'

)(
b

b

dttf .
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Proof. Let F : [a, b)  R be defined by F(x) = 
x

a

dttf )( . Then f is

improperly integrable on [a, b) if F has a finite limit at b, which means that
for every ε > 0 we can find δ > 0 such that b', b"  (b  δ, b) implies

|F(b')  F(b")| < ε. It remains to remark that F(b')  F(b") =  
"

'

)(
b

b

dttf . }

The above Cauchy's general test is useful in realizing analogies with
absolutely convergent series as follows:

2.9. Definition. If f : [a, b)  R, then we say that the integral 
b

a

dttf )( is

absolutely convergent iff 
b

a

dttf )( is convergent, i.e. f is improperly

integrable on [a, b).
2.10. Remark. In what concerns the integrability of f and f , the improper

integral differs from the definite integral: while “f integrable” in the proper
sense implies “ f integrable“, this is not valid for improper integrals. In

fact, there exist functions, which are improperly integrable without being
absolutely integrable. For example, let f : [0,  )  R be a function of

values f (0) = 1, and f (t) =
n

n 1)1( 
if t  (n1, n], where n  N*. This

function is improperly integrable on [0,  ), and

 
 



 

0 1

1 2ln
1

)1()(
n

n

n
dttf ,

but it is not absolutely integrable since









1
0

1
)(

n n
dttf .

The next proposition shows that the opposite implication holds for the
improper integrals:
2.11. Proposition. Every absolutely convergent integral is convergent.
Proof. Using the Cauchy's general test, the hypothesis means that for every
ε > 0 there exists δ > 0 such that for any β', β" (b  δ, b) we have






"

'

)( dttf < ε.

Because f is properly integrable on any compact from [a, b), and
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"

'

)(




dttf 
"

'

)(




dttf = | 
"

'

)(




dttf |

it follows that f is improperly integrable on [a, b). }

2.12. Theorem. (The comparison test) Let f , g : [a, b)  R be such that:

1) f, g are properly integrable on any compact from [a, b)
2) for all t  [a, b) we have | f(t) |  g(t)

3) 
b

a

dttg )( is convergent.

Then 
b

a

dttf )( is absolutely convergent.

Proof. Because  
"

'

"

'

)()(








dttgdttf holds for all  ,,, bb 

, we can apply the Cauchy's general test. }

2.13. Remark. a) Besides its utility in establishing convergence, the above
theorem can be used as a divergence test. In particular, if 0  f(t)  g(t) for

all t  [a, b), and 
b

a

dttf )( is divergent, then 
b

a

dttg )( is divergent too.

b) In practice, we realize comparison with functions like in example 2.3,

i.e.
t

1
on [a,  ),

)(

1

tb 
on [a, b), q t on [a,  ), etc. The comparison

with such functions leads to particular forms of Theorem 2.12, which are
very useful in practice. We mention some of them in the following
theorems 2.14 - 2.18.
2.14. Theorem  special form # I of the comparison test. (Test based on

)(lim tft
t




) Let f : [a,  )R+ be integrable on any compact from [a,  )

and let us note  = )(lim tft
t




.

1) If λ > 1 and 0   <  , then 


a

dttf )( is convergent

2) If λ1 and 0 <    , then 


a

dttf )( is divergent.

Proof. If   (0,  ), then for every ε > 0 there exists δ > 0 such that t > δ
implies 0 <   ε < tλ f(t) <  + ε, i.e.
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t
tf

t


)( .

If 1 , then the integral of
t

1
on [δ,  ) is divergent, so the first

inequality from above shows that 


a

dttf )( is divergent too. Similarly, if

λ > 1, then 
t

1
is integrable on [δ,  ), and the second inequality shows that

the integral 


a

dttf )( is convergent.

The cases  = 0 and  =  are similarly discussed using a single
inequality from above. }

2.15. Theorem  special form # II of the comparison test (Test based on

)()(lim tftb
bt




) Let f : [a, b)  R+ be integrable on any compact from

[a, b), and let us note  = )()(lim tftb
bt




,  where λ  R.

1) If λ < 1 and 0   <  , then 
b

a

dttf )( is convergent, and

2) If λ  1 and 0 <    , then 
b

a

dttf )( is divergent.

The proof is similar to the above one, but uses the testing function

 )(

1

tb
on [a, b) . }

The above two tests have the inconvenient that they refer to positive
functions. The following two theorems are consequences of the comparison
test for the case of non-necessarily positive functions.
2.16. Theorem  special form # III of the comparison test. (Test of

integrability for f(t) =




t

t)(
on [a,  ). Let f : [a,  )  R, where a > 0,

be a function of the form f(t) =




t

t)(
where:

1) φ is continuous on [a,  )

2) There exists M > 0 such that 


a

dtt)( M for all α > a.
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Then 


a

dttf )(  is convergent, whenever λ > 0.

Proof. By hypothesis, for Φ() = 



a

dtt)( we have
11

)(









x

M
for all

α [a,  ). Since λ + 1 > 1, it follows that  



a

d
1


is convergent. So,

according to theorem 2.12, 









a

d
1

)(
is absolutely convergent. Integrating

by parts we obtain

 
 












a aa

dt
t

t
dt

t
tdt

t

t
1

)(1
)('

)(

which shows that f is integrable on [a,  ). }

2.17. Theorem  special form # IV of the comparison test. (Test of
integrability for f(t) = (b t)λφ(t) on [a, b)). Let f : [a, b)  R, where

b  R, be a function of the form f(t) = (b t)λφ(t). If

1) φ is continuous on [a, b)

2) there exists M > 0 such that 


a

dtt)( M for all α [a, b),

then the integral 
b

a

dttf )(  is convergent for any λ > 0.

Proof. Let us remark that Φ() = 




a

dtt)( verifies the inequality

 





11 )()(

)(

b

M

b
.

Since 1 λ < 1,  

b

a b

d



1)(

is convergent, hence 





d
b

b

a
 


1)(

)(
is

absolutely convergent. It remains to integrate by parts

   







b

a

b

a

b

a

dt
tb

t
dtttbdtttb

1)(

)(
)(')()()(

and use the form of f. }
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The following test is based on the comparison with the particular function
g : [a, )  R, of the form g(x) = qx , where q > 0 and a > 0 (see also

problem V.2.1).
2.18. Theorem  special form # V of the comparison test. (The Cauchy's
root test) Let f : [a,  )  R, where a > 0, be integrable on any compact

from [a,  ), and let us suppose that there exists  =
t

t
tf

/1
)(lim


.

1) If  < 1, then 


a

dttf )( is absolutely convergent, and

2) If  > 1, then 


a

dttf )( is not absolutely convergent.

Proof. By the definition of  , we know that for every ε > 0 there exists
δ > 0 such that t > δ implies | |f(t)|1/t  | < ε, i.e.   ε < | f(t) |1/t <  + ε.
If  < 1, let us note q =  + ε < 1. If t > δ, we have | f(t)| < qt .

So, it remains to see that qt is integrable on [δ,  ) since q < 1. Because f
is integrable on the compact [a, δ ], it will be integrable on [a,  ) too. The

second case is similarly analyzed by noting q =   ε > 1, when 




dtqt is

divergent, and |f(t)| > qt . }

The convergence of some improper integrals can be reduced to the
convergence of sequences and series.
2.19. Theorem. (Test of reduction to series) If f : [a,  )  R+ is a

decreasing function, integrable on any [a, b]  [a,  ), then the following
assertions are equivalent:

a) 


a

dttf )( is convergent

b) The sequence of terms un = 
na

a

dttf )( , n  N, is convergent

c) The series 



Nn

naf )( is convergent.

Proof. a) implies b) because if there exists  = 


b

a
b

dttf )(lim , then

n
lim 

na

a
dttf )( =  too.

The written integrals exist because decreasing functions are integrable on
compact intervals.
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b) c) follows from the inequality f (t)  f (a + n) on [a + n 1, a + n],

which leads to  





n

k

na

a

dttfkaf
1

)()( .

Finally, c)  a) because from 





ka

ka

dttf

1

)( f(a + k 1) it follows that

 





b

a

n

k

kafdttf
1

0

)()( for all b  [a, a + n] . }

2.20. Remarks. a) Between improper integrals and series there are still

significant differences. For example, the convergence of 


0

)( dttf does not

generally imply
t

lim f (t) = 0 (see problem 6) .

b) The notion of improper integral is sometimes used in a more general
sense, namely that of "principle value" (also called "Cauchy's principal

value"), denoted as p.v.  ... . By definition,

p.v.  


 



x

x
x

dttfdttf )(lim)( , and

p.v.











  






c

a

b

c

b

a

dttfdttfdttf )()(lim)(

0
0

where c  (a, b) is the point around where f is unbounded.
Of course, the convergent integrals are also convergent in the sense of the

principal value, but the converse implication is generally not true (see
problem 7).
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PROBLEMS § V.2.

1. Show that 


a

tdtq , where a > 0, q > 0 is convergent for q < 1 and it is

divergent for q  1.

Hint. If q = 1, then 


a

dx is divergent. Otherwise  
b

a

x

q
dxq

ln

1
[qb  qa] .

2. Study the convergence of the integrals 


1
3

sin
dx

x

x
and 

1

0

ln xdx .

Hint. Use theorems 2.14 and 2.15 for
3

sin

x

x
and | lnx|.

3. Show that 


0

sin
dx

x

x
is convergent but not absolutely convergent.

Hint. Because 1
sin

lim
0


 x

x

x
, the integral is improper only at the upper

limit. We can apply theorem 2.16 (special form # III) to φ (x) = sin x, for
λ = 1. The integral is not absolutely convergent because for x  a > 0 we

have
x

x

x

x 2sinsin
 , and

  
  



a a a

dx
x

x

x

dx
dx

x

x

2

2cos

2

sin2

which is divergent.

4. Establish the convergence of  

1

0
2

)
1

(cos
x

dx

x
, for λ  (0, 2).

Hint. Apply theorem 2.17 (special form # IV) for φ (x) =
xx

1
cos

1
2

, since

21sin
1

sin
1

cos
1

1

2
 x

dt
ttx

.

5. Analyze the convergence of the integrals
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In = 










1 1

dx

x
n

x
n

n

, and Jn = 










1 11

dx

xn

x
n

n

,

where n  N* .

Hint. Use theorem 2.18 (special form # V). For In, 10
1

)(
lim

1



 x
n

x nn

x
,

hence In is (absolutely) convergent. For the (positive) function in Jn we

have n

xn

x

n

x

x


















 11
lim

1

, so Jn is divergent for n > 1. In the case n = 1, we

have 


x

x

x 1
1

lim , hence J1 is divergent.

6. Show that 


1

3cos dttt is convergent even if 3coslim xx
x 

doesn't exist.

Is this situation possible for positive functions instead of xcos x3 ?
Hint. Use theorem 2.16 for φ (x) = x2cos x3 and λ = 1, since 

3

1
cos

1

32 
x

dttt |sin x3  sin 1|
3

2
 .

According to theorem 2.14, the answer to the question is negative, i.e.
positive functions which are integrable on [a,  ) must have null limit at
infinity. In fact, on the contrary case, when )(lim xf

x 
doesn't exist or is

different from zero, we have 


)(lim xxf
x

, hence taking λ = 1 and 

in the mentioned test, it would follow that 


a

dttf )( is divergent.

7. Study the principal values of the integrals

I = 





tdte

t
sin , J = dtt




















2

1

,

where [x] is the entire part of x,
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K = 




tdtcos , and L = 


2

1
t

dt
.

Solution. I is (absolutely) convergent; J is divergent, but p.v.J = 0; K is
divergent in the sense of p.v.; L is divergent, but p.v.L = ln2.

8. Study the convergence of the integrals In = 




0

dxex xn , Jn = 


0

sin dxxn ,

and Kn = 


0

cos dxxn , where n  N.

Hint. 0lim 2 



xn

x
ex for any n  N, hence applying theorem 2.14, In is

convergent. J0, J1, K0, K1 are divergent according to the definition. In Jn and

Kn, for n  2 we may replace x = n t , and use theorem 2.16.

9. Show that the following integrals have the specified values:

a) In = !

0

ndxxe nx 




b) Jn =
2

!

0

122 n
dxxe nx 


 .

Hint. a) Establish the recurrence formula In = n In – 1 .
b) Replace x2 = t in the previous integral.

10. Using adequate improper integrals, study the convergence of the series:

a) 






1

*,
1

n n
R ; b) 







1

,
ln

n n

n
R ; c) 







2

,
)(ln

1

n nn
R .

Hint. Use theorem 2.19. In dx
x

x
b


1

ln


we can integrate by parts. In the

integral 


2 )(ln xx

dx
we can change ln x = t. All these integrals (and the

corresponding series) are convergent iff α > 1.
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§ V.3. IMPROPER INTEGRALS WITH PARAMETERS.

We will reconsider the topic of § V.1 in the case of improper integrals.
3.1. Definition. Let A  R , I = [a, b)  R, and f : A x I  R be such that

for each x  A, the function t  f(x, t) is improperly integrable on [a, b).
Then F : AR, expressed by

F(x) = 
b

a

dttxf ),( ; 


a

dttxf ),( ; 




dttxf ),( ; etc.

is called improper integral with parameter.
3.2. Remark. According to the definition of an improper integral, F is
defined as a point-wise limit of some definite integrals, i.e.

F(x)
p

 





a

b
dttxf ),(lim .

More exactly, this means that for any x  A and ε > 0, there exists

δ(x, ε) > 0 such that for all β  (b  δ, b), we have 



a

xFdttxf )(),( .

Many times we need a stronger convergence, like the uniform one, which
means that for any ε > 0, there exists δ(ε) > 0 such that for all x  A and

β  (b  δ, b), we have the same inequality: 


a

xFdttxf )(),( .

In this case we say that the improper integral uniformly converges to F,

and we note F(x)
u
 





 ab
dttxf ),(lim .

The following lemma reduces the convergence of the integral to the
convergence of some function sequences and series.
3.3. Lemma. Let us consider A  R , I = [a, b)  R, and f : A x I  R a

function, such that for each x  A, the map t  f(x, t) is integrable on each
compact from I. The following assertions are equivalent:

(i) The improper integral 
b

a
dttxf ),( , with parameter x, is uniformly

(point-wise) convergent on A to F ;
(ii) For arbitrary increasing sequence (βn)nN for which β0 = a and

bn
n




lim , the function sequence (Fn)nN, where Fn : A  R have the

values Fn(x)= 
n

a
dttxf


),( , is uniformly (point-wise) convergent on A to F.
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(iii) For arbitrary increasing sequence (βn)nN such that β0 = a and

bn
n




lim , the function series 


0n
nu , of terms un : A  R, where

un(x) = 
1

),(
n

n

dttxf





,

is uniformly (point-wise) convergent on A to F.
The proof is routine and will be omitted, but we recommend to follow the

scheme: (i) (ii)  (iii) .

3.4. Theorem. (Cauchy's general test) Let A  R , I = [a, b)  R, and

f : A x I  R be such that the map t  f(x, t) is integrable on each

compact from I, for arbitrary x  A. Then the improper integral 
b

a

dttxf ),(

with parameter x, is uniformly convergent on A iff for every ε > 0, there
exists δ(ε) > 0 such that for arbitrary x  A and b', b"  (b  δ, b), we have


"

'

),(
b

b

dttxf .

Proof. If F(x)
u
 




a

b
dttxf ),(lim , then we evaluate


"

'

),(
b

b

dttxf  
"'

)(),()(),(
b

a

b

a

xFdttxfxFdttxf

as we usually prove a Cauchy condition.
Conversely, using the above lemma, we show that the sequence (Fn)nN,

where Fn(x) = 
n

a

dttxf



),( , β0 = a, βn < βn+1, and bn
n



lim , is uniformly

Cauchy on A. In fact, for any ε > 0 we have

|Fn(x)  Fm(x) | = 




m

n

dttxf ),( ,

whenever βn, βm (b  δ, b), i.e. m, n > n0 (δ)  N . }

Using this general test we obtain more practical tests:
3.5. Theorem. (Comparison test) Let A, I and f be like in the above
theorem. Let also g : I  R+ be such that:
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1) | f(x, t) |  g(t) for all (x, t)  A x I

2) 
b

a

dttg )( is convergent.

Then 
b

a

dttxf ),( is uniformly convergent on A.

Proof. In order to apply the above general test of uniform convergence we

evaluate 
"

'

),(
b

b

dttxf   
"

'

"

'

)(),(
b

b

b

b

dttgdttxf . The last integral can be

made arbitrarily small for b', b" in an appropriate neighborhood of b, since
g is integrable on [a, b). }

3.6. Remark. If compared to theorem 12, §2, we see that the uniform
boundedness relative to x, | f(x, t) |  g(t), leads to the uniform convergence
on A. Consequently, particular tests similar to theorems 1418 in § V.2 are
valid, if the hypothesis are uniformly satisfied relative to x  A.

As in § V.1, we are interested in establishing the rules of operating with
parameters in improper integrals.
3.7. Theorem. (Continuity of F) Let f : A x I  R be continuous on A x I,

where A  R, and I = [a, b)  R. If the integral 
b

a

dttxf ),( is uniformly

convergent on A, then F : A  R, expressed by F(x) = 
b

a

dttxf ),( is

continuous on A .

Proof. According to Lemma 3.3, F n
n

u
F


 lim . On the other hand, Fn are

continuous on A (see theorem 3 in §1). Consequently, F is continuous as a
uniform limit of continuous functions. }

3.8. Theorem. (Derivability of F) Let A  R, I = [a, b)  R, and

f : A x I  R be such that:

1) f is continuous on A x I

2)
x

f




is continuous on A x I

3) 
b

a
dttxf ),( is point-wise convergent on A to F : A  R

4)  

b

a
dttx

x

f
),( is uniformly convergent on A.
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Then F is derivable on A, its derivative is F'(x) =  


b

a

dttx
x

f
),( , and F' is

continuous on A.

Proof. Let us note Fn(x) = 
nb

a
dttxf ),( , where (bn)nN is an increasing

sequence for which b0 = a and bbn
n




lim . According to the previous

lemma 3.3, F= n
n

F


lim point-wise. On the other side Fn is derivable as a

definite integral with parameter (see theorem 5, §1), and

Fn'(x) =  

nb

a
dttx

x

f
),( .

Now, using the same lemma for uniformly convergent integrals, we
obtain all the claimed properties of F . }

The operation of integration may be realized either in the proper sense (as
in definite integrals), or in the improper sense.
3.9. Theorem. (The definite integral relative to the parameter) Let us
consider A = [α, β]  R, I = [a, b) R, and f : A x I  R be such that:

1) f is continuous on A x I

2) 
b

a

dttxf ),( is uniformly convergent on A = [α, β] to F.

Then F is integrable on [α, β] and   






 












 dtdxtxfdxxF

b

a

),()( .

Proof. Let (bn)nN be an increasing sequence such that b0 = a and

bbn
n




lim . According to Lemma 3.3, F
u
 n

n
F


lim , where Fn : [α, β]  R

are expressed by Fn(x) = 
nb

a

dttxf ),( . On the other hand, according to

theorem 3.3, § V.1, Fn are continuous functions, hence F is continuous too.

So, we deduce that F is integrable on [α, β], and  









 dxxFdxxF n
n

)(lim)( .

Now it remains to use theorem 1.7, § V.1, in order to calculate

  






 












 dtdxtxfdxxF

nb

a

n ),()( ,

and to apply lemma 3.3 again. }
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3.10. Theorem. (The improper integral relative to the parameter) Let us
consider A = [α, β)  R, I = [a, b)  R, and f : A x I  R be such that:

1) f is positive and continuous on A x I

2) 
b

a

dttxf ),( is uniformly convergent to F: AR on any compact from A

3) 




dxtxf ),( is uniformly convergent to G : I  R on I

4) 
b

a

dttG )( is convergent .

Then F is improperly integrable on [α, β), and 




dxxF )( = 
b

a

dttG )( .

Proof. According to the previous theorem, for each η  [α, β), the function

F is integrable on [α, η], and    






 












 dtdxtxfdxxF

b

a

),()( .

Let us note by φ : [α, β] x [a, b)  R the function of values

φ(η, t) =
 




















tif)(

,tif),(

tG

dxtxf

The third hypothesis of the theorem shows that φ is continuous on the set
[α, β] x [a, b). On the other hand, if we note by Φ: [α, β]  R the function

Φ(η) =  
b

a

dtt),( , we obtain Φ(η) = 




dxxF )(  for all η  [α, β). Now, the

problem reduces to extending this relation for η = β. In fact, because f is

positive, for all η  [α, β) and t  [a, b) we have  








 dxtxfdxtxf ),(),( ,

i.e. φ(η, t)  G(t) . Since 
b

a

dttG )( is convergent, the comparison test shows

that  
b

a

dtt),( is uniformly convergent to Φ. Adding the fact that φ is

continuous, theorem 3.7 shows that Φ is continuous on [α, β], hence there
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exists


lim  Φ(η) = Φ(β), i.e. Φ(β) = 




dxxF )( . Replacing Φ and φ by their

values, we obtain the claimed formula. }

3.11. Remarks. a) Theorems 3.9 and 3.10 establish the conditions when we
can change the order of integration, i.e.

.),(),( dtdxtxfdxdttxf
b

a

b

a
  


























 







b) The condition f to be positive in theorem 10 is essential. For example, if

f : [1, ) x [1, )  R is expressed by f(x, t) =
3)( tx

tx




, then | f(x, t) | 

2

1

x

as well as | f(x, t) | 
2

1

t
for all (x, t)  [1, ) x [1, ), hence f is integrable

on [1, ) relative to t, and also relative to x. By direct calculation we find

F(x) = 
2)1(

1

x
and G(t) =

2)1(

1

t
. Consequently, F and G are also

integrable on [1, ), but

 
 



1 1

)(
2

1

2

1
)( dxxFdttG .

Excepting the condition of being positive, f satisfies all conditions of
theorem 3.10.

The integrals with parameter are useful in defining new functions. The
Euler's Γ and B functions are typical examples in this sense:
3.12. Definition. The function Γ : (0,  )  (0,  ) expressed by

Γ(x) = 




0

1 dtet tx

is called Euler's gamma function.
The function B: (0,  ) x (0,  )  (0,  ) of values

B(x, y) = 
 

1

0

11 )1( dttt yx

is called Euler's beta function.
This definition makes sense because:

3.13. Proposition. The integrals of Γ and B are convergent.
Proof. The integral which defines Γ is improper both at 0 and  . Because
tx1et  tx1 for t  [0, 1], and tx1 is integrable if x > 0, it follows that the
integral of Γ is convergent at 0. This integral is convergent at  because
tnet is integrable on [1, ) for all n  N.
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The integral which defines B is also improper at 0 and at 1, and, in
addition, it depends on two parameters. The convergence of this integral
follows from the inequality tx1(1 t)y1  2[tx1 + (1 t)y1], which holds
for t [0, 1], x > 0 and y > 0 (see the comparison test). This inequality may
be verified by considering two situations:
a) If t  [1/2, 1), and x > 0, then tx1  2, so that in this case

tx1(1 t)y1  2(1 t)y1  2[tx1 + (1 t)y1];
b) If t  (0, 1/2], then (1 t)  [1/2, 1), and since y > 0 too, we have

(1 t)y1
 2, and a similar evaluation holds. }

3.14. Theorem. Function Γ has the following properties:
(i) it is a convex and indefinitely derivable function;
(ii) Γ(x + 1) = x Γ(x) at any x > 0 ;
(iii) Γ(n + 1) = n! for every n  N, i.e. Γ generalizes the factorial.

Proof. (i) It is easy to see that f(x, t) = tx1et satisfies the conditions in
theorem 3.8, hence

Γ'(x) = 




0

1 ln tdtet tx .

By repeating this argument we obtain

Γ(k)(x) = 




0

1 ln tdtet ktx

for any k N*, i.e. Γ is indefinitely derivable. Its convexity follows from

Γ"(x) > 0 for all x > 0 .
(ii) Integrating by parts we obtain we obtain

Γ(x+1) = 




0

dtet tx = 
t

lim txet + x 




0

1 dtet tx = x Γ(x) .

(iii) According to (ii), Γ(n + 1) = n Γ(n) = n(n 1)…1 Γ(1), and

Γ(1) = 




0

dte t = 1.

3.15. Theorem. Function B has the properties:
(i) B(x, y) = B(y, x), i.e. B is symmetric;

(ii) For any (x, y)  (0,  ) x (0,  ) we have B(x, y) =
)(

)()(

yx

yx




;

(iii) It has continuous partial derivatives of any order.
Proof. (i) Changing t = 1 θ, B(x, y) becomes B(y, x).

(ii) Replacing t =
v1

v


in B, we obtain B(x, y) = dv

v

v
yx

x








0

1

)1(
. On the

other hand, changing t = (1 + v)u in Γ, it follows that
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Γ(x) = (1 + v)x





0

)1(1 dueu vux .

Writing this relation at x + y instead of x, we have

Γ(x+y) dueu
v

vuyx
yx 







 0

)1(1

)1(

1
.

Amplifying by vx1 and integrating like in B, we obtain

Γ(x+y)B(x, y) = .

0 0

)1(11 dvdueuv vuyxx
 
 















Using theorem 10 we change the order of the integrals and we obtain

Γ(x + y)B(x, y) = dudveveu uvxuyx
 
 















0 0

11 =

=  dxxueu xuyx



 

0

1 )( =

= Γ(x) 




0

1 dueu uy = Γ(x) Γ(y).

(iii) This property results form the similar property of Γ, taking into
account the above relation between Γ and B. }

3.16. Remarkable integrals. a) Γ(
2

1
) = 

 

0

dt
t

e t

and
2

0

2 



 due u

(also called Euler-Poisson integral).

In fact, B(
2

1
,
2

1
) = Γ2(

2

1
) =  

1

0
)1( xx

dx
, which turns out to be π, if

replacing x = sin2t .

The second integral follows from Γ(
2

1
) by taking t = u2 .

b) The binomial integral I = 


0 )(
dx

bxa

x
pn

m

, a > 0, b > 0, np > m + 1 > 0

may be expressed by elementary functions only if
1) p is integer

2)
n

m 1
is integer (positive)

3) p 
n

m 1
is integer (positive).
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In fact, noting
a

b
xn = u and k =

n

m
p

b

a

n

a
1











, we obtain

I = k 








0

1
1

)1( duuu pn

m

.

Another change of variables, namely
u

u

1
= v , leads to

I = k 








1

0

1
1

1
1

)1( dvvv n

m
p

n

m

= k B(
n

m 1
, p

n

m 1
) =

= k
)(

11

p

n

m
p

n

m










 








 


.

This formula shows that in general, I is expressed by Γ; in the mentioned
cases Γ reduces to factorials, so I contains only elementary functions.

We recall that in the case when
n

m 1
is an integer, we make the

substitution a + bxn = t s, where s is the denominator of the fraction p.

Similarly, if
n

m 1
p is an integer, the evaluation of the integral may be

made by the substitution axn + b = t s .
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PROBLEMS § V.3.

1. Show that F(x) = 




0

sin
dt

t

xt
e t is convergent for x  [0,  ) and

F(x)=arctg x.
Hint. The integral is improper at  ; the convergence is a consequence of

the comparison test, if g(t)=
t

xtsin
, t1 (see also theorem 2.16, §V.2). By

theorem 3.8, F'(x) =
21

1

x
, hence F(x) = arctg x + C. Take x = 0.

2. Calculate I(r) =  


0

2 )cos21( dxrxr , where | r | < 1.

Hint. The substitution t = tg
2

x
in I'(r) gives

I'(r) = 2  







0
2 1

4

cos21

cos

r
dx

rxr

xr







0
222

2

)1)((
dt

tat

at

where a =
r1

r1




> 0. Breaking up

222222 1)1)((

1

at

B

t

A

tat 






,

where A = B =
1

1
2 a

, we obtain

I'(r) =   0
)1(

)(
21

4

0
222

2 















 


tat

dt
aa

r


.

Consequently, I(r) = C, but I(0) = 0, hence I(r) = 0 too.

3. Show that Φ(x) = 


 

0
2

sin
arctgxdt

t

t
e xt 

, and deduce that

2

sin

0






dt
t

t
(Poisson).

Hint. Using the result of problem 1, Φ(x) = F(
x

1
) = arctg

x

1
=

2


 arctg x.

Another method consists in integrating two times by parts in Φ'(x),
and obtaining Φ'(x) = 1 x2 Φ'(x), wherefrom it follows that
Φ(x) = arctg x + C.
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For x  we deduce C =
2


. Finally, the Poisson's integral is Φ(0).

4. Calculate I = dx
x

ee bxax


  

0

, and J = dx
x

bxax





0
2

coscos
, where

0 < a < b .

Hint. I =    























 





b

a

b

a

tx
b

a

tx

a

b
dt

t
dtdxedxdte ln

1

00

.

J = dtdx
x

tx
dxtxdt

x

b

a

b

a
  
























 

00

sin
sin

1
=

2


(b a ), where 



0

sin
dx

x

tx
=

2



is the Poisson's integral (see problem 3.3) independently of t > 0.

5. Let f : (0, 1] x (0, 1]  R be a function of values
3)(

),(
tx

tx
txf




 .

Show that   















1

0

1

0
3 2

1

)(
dydx

yx

xy
,   
















1

0

1

0
3 2

1

)(
dxdy

yx

xy
, and explain

why these integrals have different values.
Hint. Theorem 3.10 does not work since f changes its sign.

6. Use the functions beta and gamma to evaluate the integrals

a) I = 
 

1

0

11 )1( dxxx qmp , p, q, m > 0 ;

b) J = 




0

dxex
qxp , p > -1, q > 0 .

Hint. a) Change the variable xm = t , and evaluate

I = 



1

0

11
)1(

1
dttt

m
qm

p

= 







 q

m

p
B

m
,

1
.

b) Replace x q = t , and calculate

J = 







0

111
dtet

q
tq

p

= 






 


q

p

q

11
.
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CHAPTER VI. LINE INTEGRAL

We will generalize the usual definite integral in the sense that instead of
functions defined on [a, b)  R we will consider functions defined on a

segment of some curve. There are two kinds of line integrals, depending of
the considered function, which can be a scalar or vector function, but first
of all we must precise the terminology concerning curves (there are plenty
materials in the literature).

§ VI.1. CURVES

We analyze the notion of curve in R3 , but all the notions and properties

can be obviously transposed in Rp , p  N \ {0, 1}, in particular in R2 .

1.1. Definition. The set γ  R3 is called curve iff there exists [a, b]  R

and a function φ : [a, b]  R3 such that γ = φ ([a, b]). In this case φ is

called parameterization  of γ .
1.2. Types of curves. The points A = φ(a) and B = φ(b) are called end-
points of the curve γ ; if A = B, we say that γ is closed.
   We say that γ is simple (without loops) iff φ is injective.
Curve γ is said to be rectifiable iff φ has bounded variation, i.e. there exists














 








1

0
1 )()(sup

n

i
ii

b

a
ttV ,

where δ = {t0 = a < t1 < … < tn = b} is a division of [a, b]. The number

L = 
b

a
V is called length of γ .

   We say γ is continuous (Lipschitzean, etc.) iff φ is so.
Let us note φ(t) = (x(t),y(t),z(t)) for any t  [a, b]. If φ is differentiable on

[a, b], and φ' is continuous and non-null, we say that γ is a smooth curve.
This means that there exist continuous derivatives x', y' and z' , and

x'2(t) + y'2(t) + z'2(t)  0 ,  t  [a, b] .
The vector t


( x /(t), y /(t), z / (t)) is called tangent to γ, at M0(x(t0),y(t0),z(t0)).

For practical purposes, we frequently deal with continuous and piece-
wise smooth curves, i.e. curves for which there exists a finite number of

intermediate points Ck  γ, k = n,1 , where Ck = φ(ck) for some ck  (a, b),

such that φ is smooth on each of [a, c1] , on [ck, ck+1] for all k = 1, …, n 1,
and on [cn, b], and φ is continuous on [a, b]. The image of a restriction of φ
to [c, d]  [a, b] is called sub-arc of the curve γ, so γ is piece-wise smooth
iff it consists of a finite number of smooth sub-arcs.
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1.3. Remarks. The class of rectifiable curves is very important since it
involves the notion of length. Geometrically speaking, the sum





 

1

0
1 )()(

n

i
ii tt  ,

from the above definition of the variation 
b

a
V , represents the length of a

broken line of vertices φ(ti). Passing to finer divisions of  leads to longer
broken lines, hence  is rectifiable iff the family of these inscribed broken
lines has un upper bound for the corresponding lengths.

Without going into details, we mention that a function ],[: baf R has

bounded variation if it has one of the following properties: monotony,
Lipschitz property, bounded derivative, or it is a primitive, i.e.


x

a
dttxf )()(  , ],[ bax (for details, including properties of the

functions with bounded variation, see [FG], [N-D-M], etc.). The above
definition of the rectifiable curves is based on the following relation
between bounded variation and length of a curve:
1.4. Theorem (Jordan). Let = (,  ): [a, b]R2 be a parameterization

of a plane curve  . The curve  is rectifiable if and only if the components
, and  of  have bounded variation.

We omit the proof, but the reader may consult the same bibliography.
1.5. Corollary. If  is a smooth curve, then it is rectifiable, and its length is

 
b

a
dtttL )()( 2/2/  .

A similar formula holds for curves in R3 and Rn .

Because all the notions from above are based on some parameterization,
it is important to know how can we change this parameterization, and what
happens when we change it. These problems are solved by considering the
following notion of "equivalent" parameterizations of a smooth curve.
1.6. Definition. The functions φ : [a, b]  R3  and ψ : [c, d]  R3 are

equivalent parameterizations iff there exists a diffeomorphism
σ : [a, b]  [c, d]

such that σ'(t)  0 for all t  [a, b], and φ  = ψ  σ. In this case we usually
note φ   ψ, and we call σ an intermediate function.
1.7. Remarks. (i) Relation  from above is really an equivalence. In
addition, this equivalence is appropriate to parameterizations of a curve
because equivalent functions have identical images. When we are
interested in studying more general than smooth curves, the "intermediate"
function σ (in definition 1.3) satisfies less restrictive conditions, as for
example, it can only be a topological homeomorphism.
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(ii) Because σ : [0, 1]  [a, b] defined by σ(t) = tb + (1t)a, is an
example of intermediate (even increasing) function in definition 1.3, we
can always consider the curves as images of [0, 1] through continuous,
smooth or other functions.

Another useful parameterization is based on the fact that the function

σ : [a, b]  [0, L], defined by σ(t) =  dzyx
t

a

)(')(')(' 222 satisfies

the conditions of being an intermediate function. In this case s = σ(t)
represents the length of the sub-arc corresponding to [a, t], and L is the
length of the whole arc γ. If s is the parameter on a curve, we say that the
curve is given in the canonical form.
(iii) From a pure mathematical point of view a curve is a class of equivalent
functions. In other words we must find those properties of a curve, which
are invariant under the change of parameters. More exactly, a property of a
curve is an intrinsic property iff it does not depend on parameterization in
the class of equivalent functions (the sense of the considered equivalence
defines the type of property: continuous, smooth, etc.). For example, the
properties of a curve of being closed, simple, continuous, Lipschitzean, and
smooth are intrinsic. Similarly, the length of a curve should be an intrinsic
property, so that the following result is very useful:
1.8. Proposition. The property of a curve of being rectifiable and its length
do not depend on parameterization.
Proof. Being monotonic, σ realizes a 1:1 correspondence between the
divisions of [a, b] and [c, d], such that the variation of the equivalent
functions on corresponding divisions are equal. It remains to recall that the
length is obtained as a supremum. }

The fact that either σ' > 0 or σ' < 0 in definition 3 allows us to distinguish
two subclasses of parameterizations which define the orientation of a curve.
1.9. Orientated curves. To orientate a curve means to split the class of
equivalent parameterizations into two subclasses, which consist of
parameterizations related by increasing intermediate functions, and to
choose which of these two classes represent the direct orientation (sense),
and which is the converse one.

By convention, the direct (positive) sense on a closed, simple and smooth
curve in the Euclidean plane is the anti-clockwise one. More generally, the
closed curves on orientated surfaces in R3 are directly orientated if the

positive normal vector leaves the interior on its left side when running in
the sense of the curve.

Alternatively, instead of considering two senses on a curve, we can
consider two orientated  curves.  More exactly,  if  γ  is an orientated 
curve (i.e. the intermediate diffeomorphism in definition 1.3 is also
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increasing) of parameterization φ : [a, b]  R3, then the curve denoted γ

of parameterization ψ : [a, b]  R3 defined by ψ(t) = φ (a + b t) is called

the opposite  of γ. 
Another way of expressing the orientation on a curve is that of defining

an order on it. More exactly, we say that X1 = φ (t1) is "before" X2 = φ (t2)
on γ iff t1  t2 on [a, b]. Using this terminology, we say that A = φ (a) is
the first and B = φ (b) is the last point of the curve. If no confusion is

possible, we can note γ =


AB  and γ =


BA . Contrarily to the division of a
curve into sub-arcs, we can construct a curve by linking together two (or
more) curves with common end-points.
1.10. Definition. Let  γi , i = 1, 2 be two curves of parameterization
φi : [ai, bi] R3 such that φ1(b1) = φ2(a2) . The curve γ, of parameterization 

φ : [a1, b1 + (b2 a2)]  R3, where

 
 









)(,btif)(

,atif)(
)(

2211212

111

abbabt

bt
t is called concatenation

(union) of γ1 and γ2, and it is noted by γ  =  γ1    γ2 .
1.11. Proposition. The concatenation is an associative operation with
curves having common end-points, but it is not commutative.

The proof is routine, and will be omitted. If γ1   γ2 makes sense, then the
concatenation γ2


  γ1

 is possible, but generally γ1    γ2 is not.
1.12. Proposition. The smooth curves have tangent vectors at each M0  γ,
continuously depending on M0 . The directions of tangent vectors do not
depend on parameterizations. In canonical parameterization, each tangent
t


= (x'(s), y'(s), z'(s)) is a unit vector.
Proof. If function φ : [a, b]  R3, of values φ(t) = (x(t), y(t), z(t)) is a

parameterization of γ, then MM0 = (x(t)  x(t0), y(t)  y(t0), z(t)  z(t0)).

Since φ is differentiable, MM0  (x'(t0)(t t0), y'(t0)(t t0), z'(t0)(t t0)),

with equality when t  t0. Consequently the direction of t


is given by
(x'(t0), y'(t0), z'(t0)). By changing the parameter, t = σ(θ), this vector 
multiplies by σ'(θ0)  0, hence it will keep up the direction. For the
canonical parameterization  we  have Δ s2 = Δ x2 + Δ y2 + Δ z2, hence the
length of the tangent vector is x' 2(s) + y' 2(s) + z' 2(s) = 1. }



§ VI.1. Curves

37

PROBLEMS §VI.1.

1. Is the graph of a function f : [a, b]  R a curve in R2 ? Conversely, is

any curve in R2 a graph of such function?

Hint. Each function f generates a parameterization φ : [a, b]  R2 of the

form φ(t) = (t, f(t)). The circle is a curve, but not a graph.

2. Show that the concatenation of two smooth curves is a continuous
piecewise smooth curve, but not necessarily smooth.
Hint. Use definition 1.7 of concatenation. Interpret the graph of x  | x |,
where x  [1, +1], as a concatenation of two smooth curves.

3. Let γi , i = 1,2 be two curves of parameterization φi : [ai, bi]  R3 with

common end-points, i.e. φ1(a1) = φ2(a2) and φ1(b1) = φ2(b2). Show that both
γ1   γ2 and γ2   γ1 make sense and they are contrarily oriented closed
curves.

4. Find the tangent of a plane curve implicitly given by F(x, y) = 0. In
particular, take the case of the circle.
Hint. If x = x(t), y = y(t) is a parameterization of the curve, from
F(x(t), y(t))  0 on [a, b], we deduce dF = 0, hence F'x x' + F'y y' = 0.
Consequently, we can take t


= (x'(t), y'(t)) = λ(F'y ,  F'x).

5. If the plane curve  γ  is implicitly defined by F(x, y) = 0, we say that
M0  γ is a critical point iff F'x(M0) = F'y(M0) = 0. Study the form of γ in 
the neighborhood of a critical point according to the sign of

Δ  =  ""2"
yyxxxy FFF  .

Example y2 = ax2 + y3 , and M0 = (0, 0).
Hint. M0 is a stationary point of the function z = F(x, y), and γ is the 
intersection of the plane xOy with the surface of equation z = F(x, y). In this
instance F(x0 + h, y0 + k)  F"xx(x0, y0)h

2 + 2F"xy(x0, y0)hk + F"yy(x0, y0)k
2,

hence Δ < 0 leads to an isolated point of γ, Δ > 0 corresponds to a node 
(double point), and Δ = 0 is undecided (isolated point). In the example, M0

is isolated for a < 0, it is a node for a > 0; it is a cusp for a = 0 .

6. Find the length of the logarithmic spiral φ(t) = (etcos t, etsin t, et),
where t  0.

Solution. L = 3'''

0

222 


dtzyx .
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7. Establish the formula of the length of a plane curve which is implicitly
defined in polar coordinates, r = r(θ). Use this formula in order to find the 
length of the cardioid r = a(1 + cos θ).
Hint. Following Fig. VI.1.1.a, we have

Δs2 = (rΔ θ)2 + (Δr)2 2
2

2 























d

dr
r .

a) b)
Fig. VI.1.1

The length of the cardioid (sketched in Fig. VI.1.1.b) is

L = 2  






000

22 8
2

cos4cos122' adadadrr .

8. Find the length of the curves defined by the following equations:

a)
3

sin3 ar  , ]2,0[   ;

b) sinr , ]2,0[   .

Answer. a) )338(
8


a

; b) 2 .

9. Find the length of the curve of equation 









r
r

1

2

1
 , ]3,1[r .

Hint. Establish a formula similar to that in the above Problem 7. The length

of the curve is 3ln
2

1
2  .



r

r 

r

 s

a

a 2a



0
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§ VI.2. LINE INTEGRALS OF THE FIRST TYPE

In this paragraph we consider the line integral of a scalar function. Such
integrals occur in the evaluation of the mass, center of gravity, moment of
inertia about an axis, etc., of a material curve with specified density.
2.1. The construction of the integral sums. Let γ be a smooth and 
orientated curve in R3, of end-points A and B. By a division of γ we 

understand a set δ ={Mk  γ : k = 0, 1, …, n} such that M0 = A, Mn = B,
and Mk < Mk+1  in the order of γ, for all k = 0, 1, …, n 1. The norm of δ is

||δ|| = 1max kk
k

MM .

   If γk =


1kk MM denotes the sub-arc of the end-points Mk and Mk+1 on γ, 

we write Δsk  for the length of γk, k = 0, 1, …, n 1. On each sub-arc γk we
choose a point Pk between Mk and Mk+1   in the order of   γ.  The set 
S = {Pk k : k = 0, 1, …, n 1} represents the so called system of

intermediate points.

Fig. VI.2.1.

   Now we consider that γ is entirely contained in the domain D on which
the scalar function f is defined (see Fig. VI.2.1). Under these conditions, we
can calculate

Sγ, f (δ , S ) = 





1

0

)(
n

k
kk sPf ,

 sk

0

z

y

DA = M0

B = Mn

f

0

R

x

A

B

Mk+1

Mk+1

Mk

Mk Pk

Pk
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which is called integral sum of the first type of f on the curve γ, 
corresponding to the division δ, and to the system S of intermediate points.
2.2. Definition. We say that f is integrable on the curve γ iff the above 
integral sums have a (finite) limit when the norm ||δ||0, and this limit is
not depending on the sequence of divisions with this property, and on the
systems of intermediate points. If this limit exists, we note

0
lim


Sγ, f (δ , S ) = fds


,

and we call it line integral of the first type of f on the curve γ .
2.3. Remark. The above definition of the line integral makes no use of
parameterizations, but concrete computation needs a parameterization in
order to reduce the line integral to a usual Riemann integral on R. In fact, if

φ : [a, b]  R3 is a parameterization of γ, then to each division δ  of γ 

there corresponds a division d of [a, b], defined by Mk = φ(tk) for all
k = 0, …, n 1. Of course, ||d||  0 iff ||δ||  0. Similarly, to each system
S = {Mk  γk : k = 0, 1, …, n 1} of intermediate points of γ, there 

corresponds a system T = {θk [tk, tk+1] : k = 0, 1, …, n 1} of intermediate
points of [a, b]. The values f(Pk) may be expressed by (f   φ)(θk), such that

Sγ, f (δ , S ) = 



k

n

k
k sf

1

0

))(( 

dttztytxzyxf
k

k

t

t

n

k
kkk 








1

)(')(')('))(),(),(( 222
1

0

.

Finally, using the mean theorem for the above integrals, we obtain

Sγ, f (δ , S ) = )()(')(')('))(( 1

1

0

222
kk

n

k
kkkk ttzyxf  




 


 ,

which looks like an integral sum of a simple Riemann integral. Thus we are
led to the following assertion:
2.4. Theorem. Let  γ  be a (simple) smooth curve in D  R3, and let

f : D  R be a continuous scalar function. Then there exists the line

integral of f on γ , and for any parameterization φ : [a, b]  R3 of γ we 

have

fds


= .)('))(( dtttf
b

a
 

In particular, the line integral does not depend on parameterization.
Proof. Let us note F(t) = (f φ)(t)|| φ'(t)||, and let

σF(d, T ) = )()('))(( 1

1

0
kk

n

k
kk ttf 
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be the Riemann integral sum of F on [a, b]. Because γ is smooth, it follows 

that F is continuous, hence there exists 



b

a
d

dttF
0

lim)( σF(d, T ). More

exactly, for every ε > 0 there exists η1 > 0 such that for every division d of
[a, b], for which ||d|| < η1, we have

| σF(d, T )  
b

a
dttF )( | <

2


. (*)

On the other hand, fφ is uniformly continuous on the compact [a, b],
hence for any ε > 0 there exists η2 > 0 such that for all t', t"  [a, b] for

which | t'  t"| < η2, we have | (f φ)(t')  (f φ)(t") | <
L2


, where L is the

length of γ. If d is a division of [a, b] such that ||d|| < η2, then
|Sγ, f (δ , S )  σF(d, T )| =

=   
22

))(('))(()(
1

0

1

0
1


  










n

k
k

n

k
kkkkk s

L
ttff


 . (**)

Consequently, if d is a division of [a, b] for which ||d|| < η = min {η1, η2},
then using (*) and (**) we obtain

|Sγ, f (δ, S )  
b

a
dttF )( |

 | Sγ, f (δ, S )  σF (d, T ) | + |σF (d, T )  
b

a
dttF )( | < ε ,

i.e. 
b

a
dttF )( is the limit of the integral sum of f on γ.

The last statement of the theorem follows from the fact that the integral
sums Sγ, f (δ, S ) do not depend on the parameterization, and the

parameterization used in the construction of F is arbitrary. }

The general properties of the line integral of the first type are summarized
in the following :
2.5. Theorem. (i) The line integral of the first type is a linear functional,
i.e. for any smooth curve γ, continuous f, g, and λ, μ  R, we have

 


 gdsfdsdsgf )( .

(ii) The line integral is additive relative to the arc, i.e.

 fds = 
1

fds + 
2

fds , whenever γ  =  γ1   γ2.

(iii) The line integral of the first order does not depend on the orientation
on the curve, i.e.

 fds =  
fds .

The proof is directly based on definition 2.2, and will be omitted.
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PROBLEMS §VI.2.

1. Calculate 


(x + y + z)ds ,  where  γ (spiral) has the parameterization

φ : [0, 2π]  R3, φ(t) = (cos t, sin t, t).

Answer. 2 2 π2.

2. Evaluate the integral  


dsyx )( , where  is the curve of equation

)()( 222222 yxayx  , 0x .

Hint. Recognize the lemniscate in polar coordinates 2cosar  , and use
the parameterization















sin2cos

cos2cos

ay

ax
, 







4
,

4


 .

The answer is 22a .

3. Calculate the mass of the ellipse of semi-axes a and b, which has the
linear density equal to the distance of the current point up to the xaxis.
Hint. The recommended parameterization is given by φ : [0, 2π]  R2,

where φ(t) = (acos t, bsin t). We must calculate




| y |ds = 2b2 +
e

ab2
arcsin e,

where e = 221
ba

a
 is the ex-centricity of the ellipse.

4. Determine the center of gravity of a half-arc of the homogeneous
cycloid x = a(t sin t), y = a(1 cos t), where t  [0, π].

Hint. xG =
M

1



xρ(x, s)ds, yG=
M

1



yρ(x, s)ds, where M is the mass of

the wire. In this case xG = yG =
3

4
a .

5. Find the moment of inertia, about the zaxis of the first loop of the
homogeneous spiral x = a cos t, y = a sin t, z = bt.

Hint. Iz = 


(x2 + y2) ρ(x, y, z) ds = 2 πa2 22 ba  .
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6. A mass M is uniformly distributed along the circle x2 + y2 = a2 in the
plane z = 0. Find the force with which this mass acts on a mass m, located
at the point V(0, 0, b).

Hint. Generally speaking, r
r

Mm
kF



3
 . In the particular case F


= (0, 0, Fz),

where Fz = km 


2/3223
0

)(

),,()(

ba

kmMb
ds

r

tyxzz




 
.

7. Let  be an arc of the astroid in the first quadrant, whose local density
equals the cube of the distance to the origin. Find the force of attraction
exerted by  on the unit mass placed at the origin.

Hint. A parameterization of the astroid is tax 3cos , tay 3sin . Up to a

constant k, which depends on the chosen system of units, the components
of the force have the expressions:




xdskFx 1 = 
2

0

4cossin3


dtttak =
5

3ak
;




ydskFy 1 = 
2

0

4 cossin3


dtttak =
5

3ak
.

8. Show that if f is continuous on the smooth curve  γ,  of length L, then
there exists M* γ such that the mean value formula holds 




fds = Lf(M*).

Hint. Using a parameterization of γ, we reduce the problem to the mean 
value formula for a Riemann integral.

9. Show that if f  is  continuous  on  the  smooth  curve  γ,  then 

|| 


fds  .


dsf

Hint. Use theorem 2.4.
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§ VI.3. LINE INTEGRALS OF THE SECOND TYPE

The main object of this paragraph will be the line integral of a vector
function along a curve in R3. The most significant physical quantity of this

type is the work of a force.
3.1. The construction of the integral sums. Let γ  R3 be a smooth

orientated curve, and let F


: D  R3 be a vector function. We suppose

that γ  D, and that F


has the components P,Q, R : D  R, i.e. for every

(x, y, z)  D, we have F


(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)).

Alternatively, using the canonical base { kji


,, } of R3 (see Fig. VI.3.1),

we obtain r


= x i


+ y j


+ z k


and F


= P i


+ Q j


+ R k


.

Fig. VI.3.1

If δ = {Mk γ : k = 0, …, n} is a division of γ, we note kr


for the position

vector of Mk. For each system of intermediate points

S = {Tk = (ξk, ηk, ζk) 


1kk MM : k = 0, …, n 1}

we construct the integral sum

FS 
,

( δ , S ) = 



 

1

0
1),(

n

k
kkk rrTF


= 




1

0

n

k

[P(ξk, ηk, ζk)(xk+1  xk) + Q(ξk, ηk, ζk) (yk+1  yk) + R(ξk, ηk, ζk)(zk+1  zk)]

where < . , . > is the Euclidean scalar product on R3. These sums are called

integral sums of the second type of F


 along the curve γ.

Tk

0

x

z

y

DA

B

Mk

Mk+1 F

j
i

k
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3.2. Definition. We say that F


is integrable on γ iff the integral sums of 
the second type have a (finite) limit when the norm of δ tends to zero, and
this limit is independent of the sequence of division which have ||δ||  0,
and of the systems of intermediate points. In this case we note the limit by

0
lim
 FS 

,
( δ , S ) = 



< F


, d r


> = 


F


d r


= 


Pdx + Qdy + Rdz

and we call it line integral of the second type of F


 on γ . 
3.3. Remark. The main problem is to show that such integrals are also
independent of the parameterization of γ, and to calculate them using 
parameterizations. We will solve this problem by reducing the integral of
the second type to an integral of the first type, which is known how to be
handled. In order to find the corresponding scalar function, we modify the
form of the integral sums by using a parameterization φ : [a, b]  R3  of γ. 

In fact, if φ (t) = (x(t), y(t), z(t)), then according to Lagrange's theorem, on
each [tk, tk+1] we have

x(tk+1)  x(tk) = x'(θk
x)(tk+1  tk)

y(tk+1)  y(tk) = y'(θk
y)(tk+1  tk)

z(tk+1)  z(tk) = z'(θk
z)(tk+1  tk),

where θk
x , θk

y, θk
z  (tk, tk+1). Consequently,

FS 
,

(δ, S ) becomes






1

0

n

k

[P(φ(θk))x'(θk
x) + Q(φ(θk))y'(θk

x) + R(φ(θk))z'(θk
x)](tk+1 tk), (*)

where φ(θk) = Pk , k = 0, …, n 1, are the intermediate points of δ.

Let us note the unit tangent vector at a current point of γ by .
r

r
C




 



More exactly, if M = φ(θ), θ  [a, b], then

)(')(')('

)(')(')('
)(

222 




zyx

kzjyix
MC




.

Let us consider the scalar function f = < F


, 


>, which has the integral

sums of the first type (see remark 3 in §2)

FS 
,

(δ, S ) = 




1

0

n

k

(f φ)( θk)|| r


'( k


)||(tk+1  tk). (**)

By comparing the integral sums of F


and f , we naturally claim that the

line integral of the second order of F


reduces to the line integral of the
first order of f. In fact, this relation is established by the following

3.4. Theorem. Under the above notations, if F


 is continuous on γ, then F


is integrable on γ,  and we have 


F


d r


= 


f ds .
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Proof. If F


is continuous, then f is continuous too, since C


is continuous
for smooth curves. Consequently, according to theorem 4 in §2, f is
integrable on γ. It remains to evaluate 

|
FS 

,
(δ, S ) 



f ds| 

 |
FS 

,
(δ, S )  Sγ, f (δ, S )| + |Sγ, f (δ, S )  



f ds|.

The last modulus is less than
2


 for ||δ|| < η1, hence it remains to find an

upper bound of the other modulus. In fact, using (*) and (**) we obtain :
|

FS 
,

(δ, S )  Sγ, f (δ, S )| 






1

0

n

k

| )(
'

k
r

P



[x'(θk

x)|| r


'(θk)|| x'(θk) || r


'( k


)|| ](tk+1  tk)| +

+ 




1

0

n

k

| )(
'

k
r

Q



[y'(θk

y)|| r


'(θk)|| y'(θk) || r


'( k


)|| ](tk+1  tk)| +

+ 




1

0

n

k

| )(
'

k
r

R



[z'(θk

z)|| r


'(θk)|| z'(θk) || r


'( k


)|| ](tk+1  tk)| .

Using the uniform continuity of the functions P  φ, Q φ, R φ, || r


'||
(which also is different from zero!), and x', y', z' on [a, b], this expression is

also less than
2


 for ||δ|| < η2 . }

3.5. Corollary. The line integral of the second order of a continuous
function on "smooth curve " does not depend on the parameterization (up to
sign, which is determined by the orientation!).

Proof. Because ||C


|| = 1, f does not depend on parameterization, hence it
remains to apply theorem 4 in §2, which expresses a similar property of the
line integrals of the first type. }

3.6. Corollary. For any parameterization φ : [a, b]  R3  of γ, we have:




F


d r


=

= 
b

a

[P(x(t), y(t), z(t))x'(t) + Q(x(t), y(t), z(t))y'(t) + R(x(t), y(t), z(t))z'(t)]dt.

Proof. Using theorem 4 in §2, for f = F


C


, we obtain




F


d r


= 


f ds = 
b

a

(f φ)(t)|| φ'(t)||dt =
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= 
b

a

(( F


r


')  φ)(t)
)('

1

tr
 || φ'(t)|| dt =

= 
b

a

[( P  φ)(t)x'(t) + (Q  φ)(t)y'(t) + (R φ)(t)z'(t)] dt ,

where we remarked that || r


'(t)|| = ||φ'(t)||. }

The general properties of the line integral of the second type can be
obtained from the similar properties of the line integral of the first type
(formulated in theorem 5, §2).
3.7. Theorem. The line integral of the second order has the properties:
(i) Linearity relative to the functions:




(λ F


+ μG


)d r


 = λ 


F


d r


+ μ 


G


d r


(ii) Additivity relative to the union of curves


 21

F


d r


= 
1

F


d r


+ 
2

F


d r


(iii) Orientation relative to the sense on the curve 


F


d r


=  


F


d r


.

Proof. Properties (i), (ii) are direct consequences of (i), (ii) of theorem 5,
§2. Relative to (iii), it is necessary to remark that even if the line integral of
the first type is the same on γ and γ , function f in the formula established
in the above  theorem  3.4  depends  on  the  sense  chosen on  γ.  In fact, if 

φ : [a, b]  R3   is  a  parameterization  of  γ, then C (φ(θ)) = C (ψ(t)) at

each φ(θ) = ψ(t)  γ.                                                                          }

3.8. Remark. By calculating line integrals of the second type, we can see
that sometimes the result does not depend on the curve but only on the
endpoints (see problem 2). In practice this is an important case, for
example, when the integral represents the work of a force, so it must be
carefully analyzed. This property of the line integral will be studied in

terms of "total differentials". More exactly, F


d r


is considered to be a total
differential iff there exists a differentiable function U : D  R such that

dU = F


d r


= Pdx + Qdy + Rdz.

Alternatively, F


d r


is a total differential iff F


= grad U, i.e. F


derives
from a potential.
3.9. Theorem. (i) If D  R3 is an open set, and U : D  R is a

differentiable function such that F


= grad U, then for any smooth curve
γ  D, of end-points A and B, we have
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F


d r


= U(B)  U(A),

i.e. the line integral of F


 is not depending on γ .

(ii) Conversely, if D  R3 is an open and connected set, and F


: D  R3

is a continuous vector function for which the line integral depends only on

the end-points of the curves, then F


d r


is a total differential.
Proof. (i) If φ : [a, b]  R3  is a parameterization of   γ,   and according 

to the hypothesis P =
x

U




, Q =

y

U




, R =

z

U




, then




F


d r


= 


Pdx + Qdy + Rdz = 


x

U




dx+

y

U




dy+

z

U




dz =

= 
b

a

[
x

U




( φ(t)) x'(t) +

y

U




(φ(t)) y'(t) +

z

U




( φ(t)) z'(t)] dt =

= 
b

a

(U  φ)'(t) dt = U(φ(b))  U(φ(a)) = U(B)  U(A).

(ii) We have to construct U, for which F


= grad U. With this aim we fix
A = (x0,y0,z0) D, and we let B = (x, y, z) free in D. Because D is open and
connected, it will also be connected by arcs, hence there exists a smooth
curve γ  D of end-points A and B. Consequently, we may define a
function U : D  R by formula

U(x, y, z) = 
B

A

F


d r


,

where we mention only the points A and B because, by hypothesis, the
considered line integral does not depend on the curve, which has these end-

points. It remains to show that
x

U




= P,

y

U




= Q,

z

U




= R, at any point

B = (x, y, z)  D. In fact,

U(x + h, y, z)  U(x, y, z) = 
h

F


d r


,

where γh is any curve (in particular a straight segment) between (x, y, z) and
(x + h, y, z) .

Using the parameterization φh (t) = (x + th, y, z) of γh, we obtain

U(x + h, y, z)  U(x, y, z) =h 
1

0

P(x + th, y, z)dt.
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Applying the mean-value theorem to the last integral, it follows that there

exists θ   (0, 1) such that 
1

0

P(x + th, y, z)dt = P(x + θh, y, z), hence

h

zyxUzyhxU ),,(),,( 
= P(x + θh, y, z ).

Since P is continuous (as a component of F


), it follows that there exists

x

U




(x, y, z) =

0
lim
h h

zyxUzyhxU ),,(),,( 
= P(x, y, z).

Similarly we evaluate the other partial derivative of U . }

3.10. Remark. (i) Beyond the existence of the potential U, the above
theorem contains a formula, which gives U concretely, namely

U(x, y, z) = 
),,(

),,( 000

zyx

zyx

Pdx + Qdy + Rdz.

More than this, because this integral is independent of the curve, we can
chose it such that to obtain the most convenient calculation. In practice, it is
frequently prefered a broken line
γ = [(x0, y0, z0), (x, y0, z0)] [(x, y0, z0), (x, y, z0)] [(x, y, z0), (x, y, z)],
when the line integral reduces to three simple (Riemann) integrals, i.e.

U(x, y, z) = 
x

x0

P(t, y0, z0)dt + 
y

y0

Q(x, t, z0)dt + 
z

z0

R(x, y, t)dt.

This formula provides U up to a constant which corresponds to the choice
of (x0,y0,z0), and equals U(x0, y0, z0). A practical key of a correct
calculation is the reduction of the "mixed" terms, which are evaluated at
(x, y0, z0), (x, y, z0), etc.
(ii) The above formulas for calculating U can be considered as rules of
determining a function when its differential is known; in other words this
means finding anti-derivatives (or primitives) of a given function. Simple
examples show that only particular triplets of functions (P, Q, R) represent
partial derivatives of a function U, so it is very important for practical
purposes to know how to identify these cases.

3.11. Definition. We say that the field F

C1

R
3 (D) is conservative iff its

components P, Q, R satisfy the conditions

z

P

x

R

y

R

z

Q

x

Q

y

P



























,,

at each point of D. Instead of "conservative" many authors use the term
"irotational" which derives from the notion of "rotation". More exactly, the

rotation of F


= (P, Q, R), noted rot F


, is defined as a vector formally
expressed by the determinant
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rot F


= .

RQP

zyx

kj














i

,

The assertion " F


is conservative" really reduces to "rot F


= 0" .
3.12. Theorem. Let D  R3 be an open and star-like set, and let

F


 C1
R

3 (D) be a vector field. A necessary and sufficient condition for

F


to derive from a potential is to be conservative.
We remind that a domain D  R3 is said to be star-like if there exists

DM 0 such that DMM 0 holds for all DM  .

Proof. If F


= grad U for some U : D  R, then F


has the components

P =
x

U




, Q =

y

U




, R =

z

U




. Because P, Q, R  C1

R
3(D), we can apply

Schwartz' theorem (on mixed second order partial derivatives) to U, and so

we easily see that F


is conservative.

Conversely, let F


be conservative on D. Since D is star-like there exists

M0  D such that for any other M  D we have .0 DMM  A

parameterization of this segment is
φ(t) = (x0 + t(x x0), y0 + t(y y0), z0 + t(z z0)), t  [0,1].

Let us define U : D  R, by

U(x, y, z) = 
MM0

F


d r


.

Using the parameterization φ in the formula established in corollary 3.6,
we obtain

U(x, y, z) = 
1

0

[( P  φ)(t)(x x0) + (Q φ)(t)(y y0) + (R φ)(t)(z z0)]dt

According to theorem V.1.5, concerning the derivation relative to a
parameter in a definite integral, we have

x

U




(x, y, z) =

= 
1

0

[
x

P




(φ(t))t(xx0) + (P  φ)(t) +

x

Q




(φ(t))t(yy0) +

x

R




(φ(t))t(z z0)]dt

The hypothesis of being conservative allows us to express this integral
only by the partial derivatives of P, i.e.

x

U




(x, y, z) = 

1

0

[t(P  φ)'(t) + (P  φ)(t)]dt =
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= 
1

0

[t(P  φ)]'(t)dt = (P  φ)(1) = P(x, y, z).

Consequently, for any (x, y, z)  D we have
x

U




(x, y, z) = P(x, y, z).

Similarly, we prove that
y

U




= Q, and

z

U




= R. }

Simple examples show that the above condition on D to be star-like is
essential for a conservative field to derive from a potential.
3.13. Example. On the open (but not star-like) set D = R2 \ {(0,0)} we

consider the field F


(x, y) = 
















2222
,

yx

x

yx

y
. Obviously, we have

F

C1

R
3(D), and

x

R

y

P









, hence F


is conservative on D . Now, let γ 

be the unit circle in the plane traced counter clockwise. Since




F


d r


= 2π  0

it is clear that F


can not derive from a potential.
3.14. Conclusion. In practice, when we have to calculate a line integral of
the second type, it is useful primarily to check whether the corresponding
vector field is conservative or not. If it isn't conservative we must find a
parameterization of the curve and apply the most general formula (as in
corollary 3.6). If the field is conservative (and the domain is star-like!), we
apply the formula in theorem 3.9 (i), when U may be obtained as in remark
10, (i) .

Finally, we mention another application of the line integral of the second
type (in addition to the work of a force).
3.15. Proposition. Let γ be a simple, smooth and closed contour, traced 
one time counter-clockwise, and having the property that any parallel to the
ox and to oy axis meets the curve at most twice. Then the area bounded by
γ is expressed by 

A =
2

1



xdy  ydx.

Proof. We can consider γ =  γ1   γ2 as in Fig. VI.3.2 (a), and alternatively
γ = γ3   γ4 as in Fig. VI.3.2 (b).

By interpreting 
1

dxy and 
2

dxy like areas of sub-graphs, we obtain

A =  


y dx.
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a) b)
Fig. VI.3.2.

Similarly,

A = 


x dy.

It remains to add the two expressions of A. }

This formula of A is be a particular case of the Green-Riemann formula
(see later VII.2.21 and 22). There exist many similar formulas of the area,
which involve non-Euclidean coordinates. In particular:
3.16. Example. Let us say we need the formula of the area of a plane
domain D, which is bounded by a closed curve, explicitly expressed in
polar coordinates by the equation r = φ(θ), where φ : [θ1, θ2]  R+. In this

case we have to evaluate A = 





2

1

)(
2

1 2 d .

In particular, the domain contained inside Bernoulli's lemniscate (of
equation r2 = a2cos 2 θ) has the area A = a2.

1

2

x

y

x

y

3 4
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PROBLEMS § VI.3.

1. Evaluate the work of the forces

F


= x i


+ y j


and G


= y i

 x j



in the process of moving a material point along an ellipse of half-axes a
and b in the xoy plane.

Hint. We calculate  F


d r


and  G


d r


, where γ has the parametric 

equations x = a cos t, y = b sint , t  [0, 2π) .

2. Calculate 
 OA|

2xydx + x2 dy, where O = (0, 0), A = (2, 1), for different

arcs OA| in the plane (straight line, parabolas, broken lines) (of end-

points O and A).

3. Find the work of the force F


(x, y, z) = (y z, z x, x y) by moving a
point along the screw line γ of parameterization x = a cos t, y = b sin t, z =
bt, t  [0, 2π).

Solution.  rdFw


 = 2 πa(a + b).

4. Calculate the integral 


22

)(

yx

xdyydxxy




, where γ is the right-hand loop

of the lemniscate r2 = a2 cos 2α, traced counter-clockwise.
Hint. A parameterization of γ, in polar coordinates, is:











2cossinsin

2coscoscos

ary

arx
, 




 


4
,

4
.

The integral is null.

5. Find the anti-derivative U if the differential is:
(i) dU = (2x + 3y)dx + (3x 4y)dy
(ii) dU = exy [(1 + x + y)dx + (1 x y)dy]
(iii) dU = xdx + ydy
(iv) dU = xdy + ydx

(v) dU =
2y

xdyydx 

(vi) dU = y2zdx + (2xyz + 1)dy + xy2dz

(vii) dU = zdzdy
yx

y
dx

yx

x
2

22
2222







.
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Hint. Verify that the corresponding field is conservative (i.e. the problem is
correctly formulated), identify the domain and calculate U using the
formula in remark 3.10, (i).

6. Find the anti-derivatives of the integrands and calculate:

(i) 


)2,1(

)1,1(

(x4 + 4xy3) dx + (6x2y2  5y4) dy

(ii) 



)1,0(

)0,1(
2)(

)2(

yx

ydydxyx
, where  does not intersect the straight line of

equation y = x

(iii) dyx
yx

y
dxy

yx

x


































 22

)1,1,1(

)0,0,0(
22

.

7. Evaluate the line integrals of the total differentials:

(i) 
)2,2,2(

)1,1,1(

yz dx + zx dy + xy dz

(ii) 



)1,1,1(

)0,0,0(
222 zyx

zdzydyxdx

(iii) 


)
1

,,(

)1,1,1(

xy
yx

xyz

xydzzxdyyzdx
, where the integration curve is situated in

the first octant.

8. Find the work of the Newtonian force r
r

F



3


, which is necessary to

move a material point from ),,( 111 zyxA to ),,( 222 zyxB along an arbitrary

curve  of these endpoints, such that (0, 0, 0)  .

Hint. F


 derives from the scalar potential

),,( zyxU = 


x

t

dtt

1
2 2

3

)2(


+ 



y

tx

dtt

1
22 2

3

)1(


+ 



z

tyx

dtt

1
222 2

3

)(


.

Consequently,  
B

A
rdFW


=
),,(

),,(
222

111

),,(
zyx
zyx

zyxU , where
3




r
U .
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9. Show that if f : R+
 R is continuous, and γ is a closed piecewise 

smooth contour, then 


f (x2 + y2)(x dx + y dy) = 0.

Hint. Consider Φ(r) = 
r

0

f(t)dt and V(x, y) =
2

1
Φ(x2 + y2), such that the

integral becomes dV .

10. A circle of radius r is rolling without sliding along a fixed circle of

radius R and outside it. Assuming that
r

R
is an integer, find the area

bounded by the epicycloid (hypocycloid) determined by some point of the
moving circle. Analyze the particular case of the cardioid, (where R = r),
and asteroid, (when R = 4r).
Hint. A parameterization of the epicycloid is

x = (R + r) cos t  r cos
2

rR 
t, y = (R + r) sint  r sin

2

rR 
t,

where t[0, 2π) is the angle between two radiuses of the fixed circle, one
corresponding to the starting common point, and the other to an arbitrary
current point. The parameterization of the hypocycloid is obtained by
replacing r by r. Answer: π(R + r)(R + 2r).

11. Evaluate I = 





2/3222 )( zyx

zdzydyxdx
where Γ is a smooth curve of

endpoints (1, 0, 0) and (0, 1, 0).

Hint. V


= (x2 + y2 + z2)3/2( kzjyix


 ) derives from a potential U, hence

I = U(B)  U(A).
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CHAPTER VII. MULTIPLE INTEGRALS

In this chapter we'll extend the notion of integral defined on an interval
I  R, and that of line integral along a curve, by considering integrals on

domains in R2, R3 and generally in Rp. These are called "multiple integrals"

because of the higher dimension of the considered domains. The whole
theory is based on the notions of "area" and "volume" which extend the
notion of "length". Because all these notions are particular cases of
"measures", for the beginning we have to clarify some topics concerning
the Jordan's measure in Rp, p  N*.

§ VII.1. JORDAN'S MEASURE

It is well known that in the process of calculating areas and volumes, we
start out with simple figures like rectangles and rectangular parallelepipeds,
which are later used for approximating other figures (a significant example
is the area of a sub-graph). This method can be unitarily applied in order to
measure bodies in Rp, for arbitrary p  N*.

1.1. Definition. If P = [a1, b1] x [a2 ,b2] x ... x [ap, bp] is a closed
rectangular parallelepiped (also called pdimensional interval, or
"paralleloid"), then the number

v(P) = 



p

k
kk ab

1

is called pvolume of P, or measure of P.
Any finite union of such closed rectangular parallelepipeds, each pair of

them having no common interior point, is named elementary body. The
pvolume (or measure) of an elementary body is the sum of the pvolumes
of all parallelepipeds which form the body.
1.2. Remark. (i) The idea of considering finite families of parallelepipeds
in the so called elementary body is specific to the measure theory in
Jordan's sense. The alternative is the Lebesgue's point of view of taking
countable families of parallelepipeds in the elementary bodies. We will
develop here the Jordan's measure theory because it is simpler, and it is
sufficient for studying the Riemann multiple integrals. However, we
mention that the simplicity of Jordan's measure is counter-balanced by
some disadvantages (for example, see later the notion of measurable set).
(ii) The union of two elementary bodies is an elementary body, and the
same for the adherence of the difference (not for the difference itself).
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(iii) The measure of an elementary body does not depend on its
decomposition into rectangular parallelepipeds; there are still problems
when the sides are no longer parallel to the axis.
1.3. Definition. Let A  Rp be an arbitrary bounded set, and let P', P"

denote elementary bodies in Rp. Then the number

μi (A) = sup {v(P') : P'  A}
is called Jordan's interior (or "internal") measure of A, and

μe (A) = inf {v(P") : P"  A}
is called Jordan's exterior (or "external") measure of A. These notions
making sense since A is bounded.

If μi (A) = μe (A) we say that A is measurable in Jordan's sense, and the
common value, denoted μ(A) = μi (A) = μe (A) is called the Jordan's
measure of A.

1.4. Examples. (i) The set A = {
n

1
: nN*} is measurable in R, and

μ(A) = 0. There are still countable sets (e.g. N, Q  [0,1], etc.), which are

not measurable, hence this property depends on the position of the terms
(unlike the Lebesgue's measure, which is null for any countable set).
(ii) The elementary bodies and their interiors are measurable sets,

and we always have μ(B) = v(B) = μ(

B ).

(iii) If A and B are measurable sets in Rp, then A  B, A  B, A \ B are

also measurable (for more details see Theorem 1.6 below).
In order to evaluate measures, the following lemma is helpful:

1.5. Lemma. Let A be a bounded set in Rp. For A to be measurable is

necessary and sufficient that for each ε > 0 there exist some elementary
bodies P'  A and P"  A such that μ(P")  μ(P') < ε.
Proof. Because always μ(P")  μ(P'), it enough to express the condition

sup {μ (P') : P' A} = inf { μ (P") : P"  A}
in terms of ε > 0. }

Now we can establish some properties of the Jordan's measure:
1.6. Theorem. If A, B  Rp are measurable sets, then:

(i) A  B implies 0  μ (A)  μ (B)

(ii) If A  B contains no paralleloid of non-null pvolume, then
μ (AB) = μ (A) + μ (B)

(iii) If A  B then μ (B \ A) = μ (B)  μ (A) .
Proof. (i) Is obvious. (ii) is based on the fact that for two paralleloids P, Q
with no common interior points we have μ (PQ) = μ(P) + μ(Q). (iii) We
may apply (ii) to B = A (B \ A). }
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Because the sets with null measure play an important role in measure
theory, we distinguish them by a special term:
1.7. Definition. We say that a set A  Rp is negligible iff it is measurable

and μ(A) = 0
1.8. Remarks. (i) The finite sets are negligible. The finite unions of
negligible sets are also negligible. Any subset of a negligible set is
negligible.
(ii) Since we always have μi (A)  μe (A), it follows that A is negligible iff
μe (A) = 0. In other terms, A is negligible iff for every ε > 0 there exists an
elementary body B, such that A  B and v(B) < ε.
(iii) If A is bounded in Rp, and p < q, then A is negligible sets in Rq. In

particular, the segment [a, b]  R is negligible in R2. More generally, the

fact that the smooth curves and surfaces are negligible in R3 is a

consequence of the following theorem:
1.9. Theorem. Let A  Rp be bounded. If f : A  Rq, where p < q, is

Lipschitzean (i.e. there exists c > 0 such that ||f(x)  f(y)|| < c ||x  y|| for all
x, y  A), then f(A) is negligible in Rq.

Proof. Let K  Rp be a pcube of side h such that A  K. By dividing

each side into n equal parts, the cube breaks up into np cubes of side
n

h
.

We claim that if ω is such a small cube, then f(A  ω) is contained in a

cube of side 2cp

n

h
in Rq. In fact, if A  ω = Ø or consists of a single point,

the assertion is obvious. If A  ω consists of more than two points, then we 
fix a  A  ω, and for any other x  A  ω, we obtain 

||f(x)  f(a)||  c||x  a||  cp
n

h
,

i.e. f(A   ω)  S ( f(a), cp
n

h
). It is sufficient to remark that this sphere is

included in a cube of side 2cp
n

h
.

If P is the union of all the cubes which contain sets of the form f(A   ω), 
then f(A)  P, and

μ(f(A))  μ(P)  np
q

n

cph







 2
= (2cph)q

pqn 

1
.

From q > p it follows that
n

lim
pqn 

1
= 0, hence f(A) is negligible. }

The following theorem shows that the negligible sets are very useful in
establishing the measurability of other sets.
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1.10. Theorem. Let A  Rp be a bounded set. A necessary and sufficient

condition for A to be measurable is that FrA be negligible (in the sense of
the Jordan's measure).
Proof. Let A be measurable. Then for any ε > 0 there exists the elementary

bodies P, Q such that P  A  Q and μ(Q)  μ(P) < ε. Because FrA  Q \

P

and μ(P) = μ(

P ), we obtain 0 μe(Fr (A))  μ(Q \


P ) = μ(Q)  μ(P) < ε,

which shows that FrA is negligible.
Conversely, let us suppose that FrA is negligible, i.e. for any ε > 0 there

exists an elementary body B such that FrA 

B , and μ(B) < ε. It is easy to

see that A \ B is open and Fr (A \ B)  Fr B. Let us note P = B\A ,

Q = BA . We claim that:
(i) P is an elementary body,
(ii) Q is an elementary body too,
(iii) P  A  Q, and

(iv) μ(Q)  μ(P) < ε.
These properties are sufficient to conclude that A is measurable.

In fact, to prove (i) we remark that since A \ B is open, for each x A \ B

there exists a paralleloid Px such that x 


xP  A \ B.

Let us remark that Fr (A \ B) 

A . In fact, on the contrary case, if

x  Fr (A \ B) and x  Fr A, then we deduce that for any neighborhood V of

x we have V (A {B)  0. In addition, V

B holds for some of these

neighborhoods (since Fr A

B ), which is impossible. Consequently, for

any y  Fr (A\B) there exists a paralleloid Py such that y 


yP  A. In

conclusion, the family {


xP : x  A \ B} {


yP : y  Fn(A \ B)}{

B } is an

open cover of A . By hypothesis A is bounded, hence A is compact, so
there exists a finite subfamily

{


ixP : i = 1, ..., n} {


jyP : j = 1, ..., m}{

B }

which also covers A . In particular, removing

B , this subfamily covers

P= BA \ , so it remains to modify the paralleloids of this cover such that P
to appear as an elementary body.
(ii) is immediate if we note that Q = P  B.
Similarly, in (iii), A  Q is obvious, and P A is based on the fact that
Fr (A \ B)  A.
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Finally, for (iv) we evaluate μ(Q)  μ(P) = μ( BBA )\( )  μ(P) =

=μ(PB)  μ(P) = μ(B) < ε. }

The last two theorems have useful consequences in the study of the
measurability. For example:
1.11. Corollary. Let A be a bounded (in particular compact) set in Rp,

p  N*. If Fr (A) consists of a finite number of smooth images of at most

(p1)dimensional measurable sets, then A is measurable.
Proof. Smooth functions are Lipschitzean, hence, according to theorem 3.9,
Fr (A)is negligible. The rest is said by theorem 3.10. }

1.12. Examples. The pdimensional ball S(x0,r) is measurable since its
boundary is smooth. Similarly, any bounded polyhedron is measurable
because its boundary consists of a finite number of (p1)dimensional flat
surfaces. In particular, the parallelepipeds having faces non-parallel to the
axes are measurable too. Evaluating their measure, as well as the
preservation of the measure under isometries and other transformations,
remain more complicated problems, which will not be studied here.
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PROBLEMS § VII.1.

1. Show that the sub-graph of any bounded and increasing function
f : [a, b]  R is measurable (in Jordan's sense).

Hint. To any two elementary bodies P', P" for which P' sub-graph f  P"
there correspond two divisions δ' and δ" of [a, b] such that for

δ = δ'  δ" = {a = x0 < x1 < ... < xn = b}
we have

v(P')   










1

0
11

1

0
1 ))(())((

n

k
kkk

n

k
kkk xxxfxxxf v(P").

For sufficiently fine divisions δ, when ||δ||  <  η,  the  difference  

   PP  =   )()()( 1

1

0
1 kk

n

k
kk xxxfxf  






will be arbitrary small.

2. Show that even though the function f : [0,1]  R2,

f(t)=
 












0tif)0,0(

0,1tif)
1

sin,(
t

t

is not Lipschitzean, the image f([0,1])is negligible in R2.

Hint. ||f(t1)  f(t2)||  1 is possible for arbitrary closed t', t"  [0, 1]. For any
ε > 0 there exists η > 0 such that f([0, η]) be included in a rectangle of area 
less than ε. The remaining f([η, 1]) is negligible according to theorem 3.9.

3. Compare the measures of I = (0, 1)  R and f (I)  R2, where

the function f : I  R2, is defined by f(0.c1c2c3c4...) = (0.c1c3..., 0c2c4...).

Are these non-negligible simple curves in Rp, p  2 ?

Hint. f(I) = (0, 1) x (0, 1), and f is 1 : 1. However, if a denotes the measure
(area) in R2, we have a(I) = 0 and a(f(I)) = 1. Take γ = f(I).

4. Study the measurability (in Jordan's sense) of the following sets in the
plane:
A = {(x, y) [0, 1] x [0, 1] : x, yQ}

B = {(x, y) [0, 1] x [0, 1] : x, yR\Q}

C = A  B, and C .
Answer. Only C is measurable.



62

§ VII.2. MULTIPLE INTEGRALS

The notion of multiple integral will be considered for an arbitrary
dimension of the space p  2, with particular stress on the cases p = 2 and
p = 3 of the "double" and "triple" integrals. Starting out with some practical
problems, we discuss the methods based on Darboux and Riemann sums.
2.1. Practical problems. (i) Let D be a compact domain of the plane,
bounded by a piecewise smooth curve γ, and let f : D  R be a bounded

function. If we have to calculate the volume of the sub-graph of f in R3, we

naturally divide the set D into measurable sub-domains Dk , k = 1, ..., n, of
areas a(Dk), and we approximate the asked volume by sums of the form




n

k 1

(inf [f(Dk)])  a(Dk),




n

k 1

(sup [f(Dk)])  a(Dk), or




n

k 1

[f(ξk)]  a(Dk), where ξk Dk.

In particular, the sub-domains Dk can be rectangles, which constitute
elementary bodies used in the process of obtaining the internal and external
measure of D.
(ii) Let D  R3 be a compact set bounded by a piecewise smooth surface.

If D represents a physical body of density f, then the mass of D may be

approximated by sums of the form 


n

k 1

f(ξk)v(Dk), where ξk  Dk, and v(Dk)

is the volume of Dk. Usually Dk are parallelepipeds with no common
interior points, in finite number, included in D.

The above sums suggest how to define the integral sums in the case of the
multiple integrals, but first we must specify some terms:
2.2. Terminology and notations. The closure of a domain (open and
connected set) is called closed domain. A bounded closed domain in Rp,

p  N* is called compact domain. If D  Rp is a measurable (in Jordan's

sense) compact domain (briefly m.c.d.), then any finite family of sets,
δ = {D1, D2, ....,Dn}, which satisfies the conditions:
(i) each Dk , k = 1, ..., n is a m.c.d.,

(ii) D =
n

k 1
 Dk ,

(iii)


lk DD  = Ø whenever k  l,
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is called division of D. By norm of division δ we understand the number
||δ|| = max{d(Dk) : k = 1, ..., n}, where d(Dk) = sup {||x  y|| : x, y  Dk} is
the diameter of Dk. Division δ" is said to be finer than δ' iff for any
D'  δ' there exists D"  δ" such that D'  D". If δ' and δ" are divisions
of D, then

δ = {D' D" : D'  δ' and D"  δ"}
is called supremum of δ' and δ" and it is denoted by δ = δ' v δ". The
Jordan measure on Rp will be denoted by μ.

2.3. The construction of the integral sums. Let D  Rp be a m.c.d., let

f : D  R be bounded, and let δ = {D1, D2, ....,Dn} be a division of D. For

each k = 1, ..., n we note mk = inf f (Dk), and Mk = sup f (Dk). The sum

sf (δ) = 


n

k 1

mk μ(Dk)

is called Darboux inferior sum, while

Sf (δ) = 


n

k 1

Mk μ(Dk)

is called Darboux superior sum.
If S = {ξ k : k = 1, ..., n}, where ξ k  Dk is a system of intermediate

points, then the sum

σf (δ, S ) = 


n

k 1

f(ξ k) μ(Dk)

is called Riemannian sum.
Using these sums we define the "multiple" integrals:

2.4. Definition. The number I =


sup sf (δ) (


 infI Sf(δ)) is called Darboux

inferior (superior) integral of f on D. We say that f is Darboux integrable

on D iff I = I . In such a case , the common value is denoted by

I = I = I =  

D

fd

and is called the multiple integral of f on D (in Darboux' sense).
We say that f is integrable in Riemann's sense on D iff there exists

L =
0

lim


σf (δ, S )

and this limit is independent of the sequence of the divisions (with
||δ||  0) and of the systems of intermediate points. If so, L is named the
Riemann multiple integral of f on D, and it is also denoted

L =  

D

fd

This coincidence of notations is based on the following:
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2.5. Theorem. The following assertions are equivalent:
(i) f is integrable on D in Darboux' sense
(ii) for any ε > 0 there exists a division δ such that Sf(δ)  sf(δ) < ε
(iii) f is integrable on D in Riemann's sense.

The proof is the same as for simple integrals on R, and it will be omitted.

In particular, assertion (i)  (ii) represents the well known Darboux
criterion of integrability.
2.6. Particular cases. If p = 1, and D = [a, b]  R we recognize that


D

fd = 
b

a

dxxf )( .

In the case p = 2 we usually note


D

fd = 
D

dxdyyxf ),(

and we call it double integral of f on D.
Similarly, when p = 3, we note


D

fd = 
D

dxdydzzyxf ),,(

and we name it triple integral of f on D .
Even for p greater than 3 the multiple integral is sometimes written in the

form  

D

fd = pp
DD

dxdxxxffd ...),...,(...... 11  .

Using the previous theorem we obtain an important class of integrable
functions:
2.7. Theorem. Let D  Rp be a m.c.d. , and let f : D  R be a bounded

function. If the set Δ = {xD : f is discontinuous at x} is negligible, then f
is integrable on D .
Proof. The case μ(D) = 0 is trivial, so that we'll consider μ(D) > 0. For the
beginning we prove the theorem under the hypothesis Δ = Ø, when f
(continuous) on D (compact) is uniformly continuous, i.e. for any ε > 0

there exists η > 0 such that ||x'  x"|| < η implies |f(x')  f(x")| <
)D(


.

Now, if δ = {D1, D2, ..., Dn} is a division of D, for which || δ|| < η, we 
obtain

Sf (δ)  sf (δ) = 


n

1k

(Mk  mk) μ(Dk) = 


n

k 1

[ f(x'k)  f(x"k)] μ(Dk) <

<
)(D





n

k 1

μ(Dk) = ε,
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where the existence of x'k, x"k  Dk such that f(x'k) = Mk and f(x"k) = mk for
every k = 1, ..., n, is assured by the continuity of f on the compacts Dk.
Consequently, according to theorem 2.5, f is integrable on D.
   Finally, let us consider the general case when Δ  Ø. Since μ(D) = 0, for

any ε > 0, there exists an elementary body B,  such  that  Δ

B and

μ(B) <
M4


, where M = sup {|f(x)| : x  D}. The set D \


B is a m.c.d. too,

on which f is continuous, hence, as before, f is integrable on D \

B . In other

terms, there exists a division 
~

= {D1, D2, ..., Dn} of D \

B such that

Sf( 
~

)  sf( 
~

) <
2


.

Of course, δ = 
~
{DB} is a division of D, for which we have

Sf(δ)  sf(δ) = Sf( 
~

)  sf( 
~

) + (MB  mB) μ(D B),
where

MB = sup {f(x) : x  D  B} and mB = inf {f(x) : xD  B}.

Consequently Sf(δ)  sf(δ) <
2


+ 2M

M4


= ε. }

Basicly the multiple integrals have the same properties as the simple ones
(defined on compact sets from R) ones:

2.8. Proposition. The integrable functions on m.c.d. have the properties:

(i)   

D

dgf = α  

D

fd + β  

D

gd (linearity)

(ii) 
 21 DD

fd = 
1D

fd +  

2D

fd , whenever 


21 DD Ø (additivity relative

to the domains)

(iii) If f  g on D, then  

D

fd   

D

gd (monotony).

(iv) If f is integrable on D, then | f | is also integrable on D, and:

| 
D

fd |   

D

df || (absolute integrability)

(v) μ(D) inf f(D)   

D

fd  μ(D) sup f(D) (mean-value property)

The proof is directly based on definitions and it is omitted.
2.9. Proposition. If f is continuous on the m.c.d. D  Rp, p  1, then there

exists ξ D such that 
D

fd = f(ξ) μ(D) (mean-value integral formula).

Proof. Because f is continuous on the compact D, there exists x1, x2  D
such that inf f(D) = f(x1) and sup f(D) = f(x2). If we note
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λ = 
)(

1

D  

D

fd ,

then property (v) in proposition 2.8 takes the form f(x1)   λ  f(x2).
Using the fact that D is also open and connected, there exists a

continuous curve γ  D of end-points x1 and x2 . If φ : [a, b]  D is a
parameterization of γ, then g = f  φ : [a, b]  R is also continuous, hence

it has the Darboux' property. In particular, because
g(a) = f(x1)   λ  f(x2) = =g(b),

it follows that there exists t  [a, b] such that  λ = g(t) = f(ξ),  where 

ξ = φ(t). Consequently,
)(

1

D  

D

fd = f(ξ), for some ξ  D. }

2.10. Remark. Mainly there are two methods for calculating the multiple
integrals: one uses the reduction of the dimension by iteration; the other
consists in changing the variables. We will analyze the first method starting
out with the simplest case when D  Rp reduces to a paralleloid P. More

exactly, we consider a Cartesian decomposition of P of the form
P = P' x P", which leads to the distinction of two components in any xP,
namely x = (u, v), where u = (x1, ..., xm)  P' and v = (xm+1, ..., xp)  P" for
some 1 m  p 1. If f : P  R , then we note f(x) = f(u, v).

2.11. Theorem. Let f : P  R be an integrable function on the paralleloid

P = P' x P". If for each fixed uP' there exists I(u) = 
"

),(

P

dvvuf , then

I : P'  R is an integrable function on P', and the following equality

holds:

 

P P

duuIdxxf

'

)()( .

Proof. By dividing each side of P' and P" into n equal parts, we obtain the
divisions δ' = {P'1,...,P' mn } of P', δ" = {P"1,...,P" mpn  } of P", and

δ = {Pij = P'i x P"j; i = 1, ..., nm; j = 1, ..., npm} of P. Let us note
mij = inf f(Pij) and Mij = sup f(Pij),

so that for each ui  P'i and vj  P"j we have mij  f (ui, vj)  Mij .
Because f is integrable relative to the variable v on P", it will be

integrable relative to v on P"j too, hence by integrating the above inequality
we obtain

mij μ"(P"j)  
''

),(

jP

i dvvuf  Mij μ"(P"j) ,

where μ" is Jordan's measure on Rpm.

Adding these relations for all j = 1, ..., npm, we obtain
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mpn

j 1

mij μ"(P"j)  
jP

i dvvuf

"

),( = I(ui)  




mpn

j 1

Mij μ"(P"j). (*)

If μ' is Jordan's measure on Rm, it is easy to see that μ'(P'i) μ"(P"j) = μ(Pij)

for all i = 1, ..., nm and j = 1, ..., npm, where μ is the measure on Rp. Let us

note by S ' = {u1,...,u mn
} the system of intermediate points, and let

σI (δ' , S ' ) = 


mn

i 1

I(ui) μ'(P'i)

be the Riemannian sums of I on P'. By multiplying the relations (*) by
μ'(P'i), and adding all the forthcoming relations, we obtain




mn

i 1





mpn

j 1

mij μ(Pij)  σI (δ', S ') 


mn

i 1





mpn

j 1

Mij μ(Pij) (**)

Now we mention that n  implies ||δ'||  0 and ||δ"|| 0, as well as
||δ||0 since ||δ|| ||δ'|| + ||δ"||. Consequently, because f is integrable on P,
the first and the last sums in the inequality (**) have a common limit,

namely 
"

* ),(

P

dvvuf , so it follows that the limit

0'
lim


σI (δ', S ') = '

'
 

P

Id ,

also exists, and  

P

fd = '

'
 

P

Id . }

2.12. Corollaries. (i) In the conditions of the above theorem we have:

  













"' ' "

),(),(

PP P P

dudvvufdudvvuf

x

.

In particular, when f(u, v) = g(u)h(v), we can reduce the integral of f to a

product of integrals of g and h, i.e. 
P

fd =
























"'

)()(

PP

dvvhduug .

(ii) Interchanging u and v , if J(v) = duvuf

P


'

),( is integrable on P', then

 

P

fd = "

"
 

P

Jd ,

or equivalently,

  













"' '' '

),(),(

PP P P

dudvvufdudvvuf

x

.

(iii) If m = p 1, i.e. P" = [ap, bp], we have
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P

fd = dudxxuf

P

b

a

pp

p

p

  













'

),( ,

and by repeating the iteration, we obtain

 

P

fd = 1221

1

1

2

2

...),...,,(... dxdxdxxxxf
b

a

b

a

b

a

pp

p

p

  





























.

All these formulas are direct consequences of the above theorem, so they
need no proof. In particular, for double and triple integrals we have:


P

dxdyyxf ),( = dxdyyxf

b

a

b

a
  












1

1

2

2

),( ,

where P = [a1, b1] x [a2, b2], and respectively


P

dxdydzzyxf ),,( = dxdydzzyxf

b

a

b

a

b

a
   


























1

1

2

2

3

3

),,( ,

where P = [a1, b1] x [a2, b2] x [a3, b3].
2.13. Remark. The above formulas are rarely useful in practice because
they refer to a very particular form of the domain D, namely that of a
paralleloid. In order to extend these formulas up to an arbitrary m.c.d.
D  Rp , p > 1, we introduce the notion of "section" as a generalization of

the Cartesian decomposition of a paralleloid. More exactly, if u = (x1, ..., xm)
for some m = 1, ..., p 1 is fixed, then the nsection of D is defined by

D[u] = {v=(xm+1,...,xp) : x = (u, v) D}.
The set

Prm(D) = {u=(x1,...,xm) : D[u]  Ø}
represents the mprojection of D. Further we'll consider that the nsections
and the mprojections of D are also m.c. domains. In particular, when
m = p 1 we suppose that D[u] reduces to a closed interval; more exactly,
we say that D is simple iff there exist two functions φ, ψ  CR

1(Prp1(D))

such that D[u] = [φ(u), ψ(u)] for all u  Prp1(D).
2.14. Theorem. Let D  Rp, p > 1, be a m.c.d. and let f : D  R be

integrable on D. If for each u  Prm(D) there exists I(u)= ,),(
][

uD

dvvuf

then I : Prm(D)  R is integrable and  

D

fd = 
)(Pr

)(

Dm

duuI .

Proof. In order to reduce this theorem to theorem 2.12, let P be a
paralleloid which contains D, and let f * : P  R be an extension of f, i.e.



§ VII.2. Multiple integrals

69

f *(x) =








D\Pxif

Dxifxf

0

)(
.

In this situation, f * is integrable on P, and  

P

df * =  

D

fd .

Because in the Cartesian decomposition P = P' x P" we have P' = Prm(P)
and P' = P[u] for all u  P', theorem 2.12 takes the form

 

D

fd = 
'

* )(

P

duuI

where I*(u) = 
"

* ),(
P

dvvuf . Now, it remains to see that

I*(u) =








)(P'\Pruif0

)(Pruif)(

m

m

D

DuI
,

and, because f * is null outside D, we have

I*(u) = 
][

),(
uD

dvvuf .

To conclude, we introduce this expression in the integral of f. }

In practice this theorem is mainly used for m = 1 and m = p 1, when it
furnishes the principal methods of iteration:
2.15. Method I of iteration. (m = 1) Let [a1, b1] = Pr1(D) be the projection
on x1axis of D, and let us suppose that for any x  [a1, b1] there exists

I(x1) =  ][ 21
1

...),...,(
xD pp dxdxxxf .

Then I is integrable on [a1, b1] and  

D

fd = 
1

1

11)(

b

a

dxxI , i.e.

   







 1221

][
11

1

1
1

...),...,,(.......),...,(... dxdxdxxxxfdxdxxxf

b

a

nn
xD

nn
D

.

2.16. Method II of iteration. (m = p 1) Let D be a simple m.c.d. and let
f : D  R be an integrable function. If for any u = (x1,...,xp1)  Prp1(D)

the function xp  f(u, xp) is integrable on [φ(u), ψ(u)], then the
function I : Prp1(D)  R, defined by

I(x1,...,xp1) = ,),,...,(

),...,(

),...,(

11

11

11

p

xx

xx

pp dxxxxf
p

p












is integrable on Prp1(D), and

D fd = 


)(Pr 1111
1

...),...,(
D pp

p

dxdxxxI ,
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i.e.

  





 



















11

),...,(

),...,(

11
)(Pr

11 ...),,...,(......),...,(...
11

11
1

p

xx

xx

ppp
D

pp
D

dxdxdxxxxfdxdxxxf
p

p
p

2.17. Remarks. (i) The above methods reduce the multiple integrals to
simple integrals with variable limits. In the case of p = 2, when D is
simple m.c.d. in the plane, methods I and II coincide.
(ii) The above methods of iterating the multiple integrals can be intuitively
described as techniques of "sweeping" the domain D by different sections.

For example, if D is a simple m.c.d. in the plane, then we may interpret

the calculus of the integral I(x) = 




)(

)(

),(
x

x

dyyxf as finding a double integral

on a thin band Bx = Δx x [φ(x), ψ(x)] from D (see the figure VII.2.1).

Fig. VII.2.1.

Finally, to obtain the double integral, the band Bx "sweeps" the domain by
a movement between a1 and b1, which means to calculate

 
1

1

),()(

b

a D

dxdyyxfdxxI .

Similarly, we can sweep the domain using horizontal bands, if D allows.
(iii) Besides iteration, there is another technique of calculating multiple
integrals, which is based on the change of variables. The formulas are
similar to those concerning the simple integrals, but in the case of the
multiple integrals we mainly use the change of the variables in order to
transform the given domain D into a simpler one, for example into a
parallelepiped, if possible.

y=ψ (x)

0 a1 b1

x

y

y=φ (x)

D
Bx

x x+Δx
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The following theorem of changing the variables in a multiple integral
naturally extends the rule of changing the variable in the simple integral on
[a, b]  R. We recall that a change of variable of the open set A  RP is a

1:1 diffeomorphism T : A  RP between A and B = T(A). As usually, we

note x = T(u) = (φ1(u), ..., φp(u)), where u  A. According to the local
inversion theorem, if the Jacobian of T is non-null at u0, then T realizes a
change of variables in a neighborhood of u0 .
2.18. Theorem. Let D, E  RP, p  N* be m.c.d., and let T : E  D be a

transformation such that:
(i) T is a 1:1
(ii) T(E) = D

(iii) det JT(u)  0 at any u

E

If f : D  R is continuous on D, then

 
D E

T duuJuTfdxxf |)(det|))(()(  .

Proof. We may reason inductively relative to p  N*. For p = 1 the property

reduces to the well known theorem of changing the variable in the definite
simple integral. Let us suppose that the theorem is valid up to p = n 1 1.
In order to prove it for p = n, we decompose the transformation T : E  D
into T = T2 T1 , where T1 : E  Rn is defined by

(v1,...,vn) = T1(u1, u2,...,un) = (u1, φ2(u1...,un), ..., φn(u1,...,un))
and T2 : F  T1(E)  Rn is defined by

(x1, ..., xn) = T2(v1, v2, ...,vn) = (φT1
1(v1,...,vn), v2, ..., vn).

It is easy to see that T1 and T2 satisfy conditions (i)(iii) if T does, so the
problem reduces to prove the assertion of the theorem for T1 and T2.

So we claim that

n

F

nTn

D

nn dvdvvvJvvTfdxdxxxf ...|),...,(det|),...,)((...),...,( 111211 2   (*)

In fact, if Pr1(D) = [a1 ,b1] according to theorem 2.14 (method II),

   














D

n

xD

b

a

n dxdxdxxxfdxxf ...),...,()( 2

][

11

1

1

1

.

By changing the variable x1 in the above simple integral (the case p = 1)
we obtain

11),...,(21),...(121 )('),...,),((),...,,(
22

1

1

dvvxxvfdxxxxf
nn xxnxx

b

a

n  




where Φ )x,...,x( n2
(v1) = φ1T1

1(v1, x2, ....,xn), and Φ ),...,( 2 nxx ([α, β]) = [a1, b1].

Because
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Φ' ),...,( 2 nxx (v1) =
1x


( φ1T1

1) (v1, x2, ....,xn) =det J
2T (v1, x2, ....,xn)  0,

where [α, β] = Pr1(F) and D[x1] = F[v1] we obtain

nnT

F

n

n

D vF

nTn

F

dvdvdvvvJvvTf

dvdvdvvvJvvTfdxxf

...|),...,(det|),...,)((

...),...,(det),...,()()(

21112

2

][

111

)(Pr

2

2

1

2

1



   



















which proves (*) .
Now we note g = (f  T2)| det J

2T |, and we claim that

 
F

n

E

nTn duduuuJuuTgdvvg ...|),...,(det|),...,)(()( 1111 1
 . (**)

In fact, using again theorem 2.14 (method I), we can write

,...),...,()( 1

][

21

1

 
















 dvdvdvvvgdvvg

vF

nn

F

where F[v1]  Rn1. Because the property is supposed valid for p = n 1,

we obtain

n

uE

nvnnn

vF

nn

duduuuuuvuuvvg

dvdvvvvg

...|),...,(det|)),...,,(),...,,...,,(,(

...),...,,(

2

][

2212121

][

221

1

1

1









where
1v (u2, ..., un) = (φ2(v1, u2, ...,un), ..., φn(v1, u2, ..., un)). Consequently,

det
1v

J (u2, ..., un) = det
1TJ (v1, u2, ...,un) .

In fact, T1 preserves the first component which implies that
[α, β] = Pr1(E), hence

,|(u)detJ|)(u)T(g

...|),...,,(det|),...,,()()(

E

T1

1

)(Pr

22121

][

1

1

1

1

1

du

dududuuuuJuuuTgdvvg
F E

nnTn

uE



  























which is (**) .
Finally, combining (*) and (**) we obtain :

   

D F E

T duuJuTgdvvgdxxf |)(det|))(()()(
11

=  duuJuTJuTTf T

E

T |)(det||)(det|)]()[(
12 112 
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= duuJuTf

E

T |)(det|))((  ,

which accomplishes the proof. }

2.19. Particular transformations. (i) The transitions to polar coordinates
in the plane









try

trx

sin

cos

is a transformation T : (0,  ) x [0, 2π)  R2 \ {(0, 0)}, for which

det JT(r, t) = r. Consequently, for any m.c.d. D  R2 \ {(0, 0)} and

continuous f : D  R we have

 




D DT

rdrdttrtrfdxdyyxf

)(1

)sin,cos(),( .

(ii) Similarly, passing to the cylindrical coordinates in open space
(x,y,z)  (r,t, z),















zz

try

trx

sin

cos

represents a transformation T : (0,  ) x [0, 2π) x R R3 \ {(0, 0,0)} with

det JT(r, t, z) = r.
According to the previous theorem, for any m.c.d. D  R3 \ {(0, 0, 0)}

and any continuous f : D  R we can write

 




D DT

rdrdtdzztrtrfdxdydzzyxf

)(1

),sin,cos(),,(

(iii) The spherical coordinates in space are introduced by the formulas















cos

sinsin

sincos

z

y

x

Considered as a transformation T : (0,  ) x [0, 2π) x [0, π]  R3, with

det JT(ρ, φ, θ) = ρ2sin θ ,
the change of variables (x, y, z)  (ρ, φ, θ) in the triple integral of a 

continuous function f : D  R where D  R3 \ {(0, 0, 0)} is a m.c.d., is

realized by the formula

.sin)cos,sinsin,sincos(

),,(

)(

2

1










DT

D

dddf

dxdydzzyxf
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2.20. Remark. The change of the variables in a multiple integral formally
reduces to the modification of the domain D, and to the replacement of the
"differentials" according to the formula

dx1...dxp = | det JT(u1, ...,up)|du1....dup.
This last equality may be considered a correspondence between the

measures of the simplest elementary bodies in the considered coordinates.
More exactly, in Cartesian coordinates u1, ..., up, the paralleloid of sides
Δx1, ..., Δxp, has the measure Δμ = |det JT(u)| Δx1, ..., Δxp. It is easy to see
(Fig. VII.2.2) that in the above particular cases we have:
- Δa = rΔrΔt for the area in polar coordinates in the plane;
- Δvcyl = rΔrΔtΔz for the volume in cylindrical coordinates in space;
- Δvsph = ρ2sinθΔ ρΔ φΔθ for the volume in spherical coordinates .

Fig. VII.2.2

Δz

r Δt

Δtt
Δa

(a)

Δr
r

x

y

z

0

Δvcyl

z+Δz

z

ρ

ρΔθ ρsinθΔφ

Δρ

Δvsph

ρ sinθ

Δθ ρ

ρΔφ
Δφφ

θ

x

y

z

0

(b)
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To close this paragraph we will analyze an important relation between
double integrals and line integrals of the second order, which is known in
the literature as Green's formula.
2.21. Theorem. Let γ  R2 be a simple, closed, piecewise smooth curve,

which bounds the compact domain D, when it is traced once counter-

clockwise. If P, Q  CR
1( D

~
), where D  D

~
( D

~
is open), and D has finite

decompositions in simple sub-domains relative to the 0x as well as relative
to the 0y axes, then the Green's formula holds:

  


















 D

dxdy
y

P

x

Q
QdyPdx .

Proof. It is clear that D can be decomposed into a finite number of
rectangles and sub-domains of the form D1, D2, D3 and D4 as in the figure
VII.2.3 (a) from below. Consequently it is sufficient to prove the formula
for such simpler domains, e.g. for D1.

Fig. VII.2.3

In fact, using the two equations of ,1 y = φ(x), where x  [x0, x1],

and x = ψ(y), where y  [y0, y1], the double integral on D1 becomes (see
Fig. VII.2.3, (b))
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=   




1 BM MA

QdyPdxQdyPdxQdyPdx .

The other forms of the sub-domains are similarly discussed.
By adding such formulas, the line integrals on the interval segments

cancel each other out, being calculated in opposite senses. }

2.22. Corollary. Under the conditions concerning D in the above theorem,
the area of D has the expression

a(D) = 


 ydxxdy
2

1
.

Proof. We can consider P = y and Q = x in the above theorem, and take

into consideration that a(D) = 
D

dxdy . We recognize here the formula of

Proposition 15, §3, Chapter VI, for more general shape of the domain. }

To conclude this section, we mention an interesting application of the
double integrals in mechanics:
2.23. Example. A body D of constant density γ is obtained from a sphere 
of radius R by removing a concentric sphere of radius r < R. We can show
that the attraction of this solid on any material point lying in the interior
sphere is null. In fact, using the spherical coordinates (ρ, φ, θ), the element 
of mass of D, say ΔM = γ ρ2sin θΔ ρ Δ φ Δθ , acts  on  the  mass  m with a
force of value

ΔF = k
2d

Mm
,

where d2 = ρ2 2r ρcosθ + r2. The component along oz is

ΔFz = ΔF cos(z,d) = ΔF
d

rcos
.

Consequently

Fz = k γm  
 







2

0 1
2/322

2

0
)cos2(

)cos(sin
R

d
rr

r
dd =

=   






R

r

dr
rr

r
d

r

mk

0
2/322

)cos(
)cos2(

sin
2 ,

where the integral relative to θ can be computed by parts. Finally Fz = 0.
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PROBLEMS §VII.2

1. Depict the domains of integration and evaluate the following iterated
integrals:

(i)  


1

0

1

0
2

2

1 y

dyx
dx (ii)   

2

0

1

0

2 )2( dxyxdy

(iii)  
2

1 2/1
2

2x

y

dyx
dx (iv)  




1

0

1

0

22

2

1 dyyxdx
x

Answers. (i)
12


; the integral breaks up into a product of simple integrals;

(ii)
3

14
; the domain is a rectangle, but the function differs from a product;

(iii)
4

9
; the function is a product g(x)h(y), but D is not a rectangle;

(iv)
6


; D is a quarter of a disc and the integral is

8

1
from the volume of the

unit sphere.

2. Change the order of integration in the following double integrals:

(a)  
4

0

12

3 2

),(
x

x

dyyxfdx (b)  




1

0

1

1 2

),(
y

y

dxyxfdy

Hint. (a)  
48

0

8/

12/
),(

y

y
dxyxfdy ; (b) Express the integral as a sum.

3. Evaluate 
D

xdxdy , where D is:

(a) a triangle with vertices O(0, 0), A(1, 1), B(0, 1);
(b) a region bounded by the straight line passing through the points A(2, 0)
and B(0, 2), and by the arc of a circle of center C(0, 1) and radius r = 1.
Hint. (a) 61 ; (b) 61 .

4. Calculate 
D

y

x

dxdye , where D is a curvilinear triangle bounded by the

curves of equations y2 = x, x = 0, y = 1.
Answer. 21 .
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5. Evaluate the integral I = 
D

ydxdy , where D is bounded by the axis of

abscissas and an arc of the cycloid x = R(t  sin t), y = R(1  cos t).

Hint. I = dxydy
R x

 
 













2

0

)(

0

, and we change the variable in the simple integral

relative to x, i.e. I = 3
2

0

)cos1(

0
2

5
)cos1( RdttRydy

R tR

















 
 

.

6. Calculate I= 
D

dxdydzzyxf ),,( if D = [0, 1]3 is the unit cube and:

(i) f(x, y, z) = xy2ez (ii) f(x, y, z) =
1

1

 zyx
.

Hint. (i) I is a product of simple integrals. (ii) Use theorem 2.11.

7. Calculate I= 
D

xyzdxdydz if:

(i) D is a tetrahedron bounded by the planes x + y + z=1, x = 0, y = 0
and z = 0.

(ii) D is a region between the cone z = 22 yx  and the

paraboloid
z = 1 x2 y2.

Hint. (i) I =    


























 1

0

1

0

1

0
720

1
dxdyzdzyx

x yx

; (ii)  














 

)(Pr

1

2

22

22D

yx

yx

dxdyzdzxy ,

where Pr2(D) = {(x, y)  R2 : x2 + y2  r2}, and r =
2

15 
. Alternatively,

pass to cylindrical (or polar) coordinates.

8. Evaluate I = 
D

zdxdydz , where D is bounded by the plane z = 0 and:

(i) the upper half of the ellipsoid .1
2

2

2

2

2

2


c

z

b

y

a

x

(ii) the pyramid |x| + |y| + |z| = 1, z  0 .

Hint. Use the formula of Method I, namely I = dzdxdyz
z

z zD
 













1

0 ][

, where the

double integral represents the area of a simple section.
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9. Evaluate:

(i)   
2

0 0

22
2

0

2

dzyxzdydx
axx

using cylindrical coordinates

(ii)  









R

R

yxRxR

xR

dzyxdydx

22222

22 0

22 )( using spherical coordinates.

Answers. (i)
9

8
a2 ; (ii) 5

15

4
R .

10. Passing to polar coordinates, evaluate I =  
D

dxdyyxa 222 , where

D is a loop of the lemniscate (x2 + y2)2 = a2(x2  y2), x0 .
Hint. Draw the corresponding domain bounded by r2 = a2cos2t in the plane
(r, t), t  [0, π].

11. Calculate  

D

dxdy
b

y

a

x
2

2

2

2

1 , extended over the region D, which is

bounded by the ellipse 1
2

2

2

2


b

y

a

x
.

Hint. Use the generalized polar coordinates (r, t), defined by














tr
b

y

tr
a

x

sin

cos

.

12. Evaluate I =  
]1,0[]1,0[

422 )(
x

dxdyeyx xy using the coordinates u = x + y

and v = x y.
Hint. Divide the square in the (u, v)plane into two triangles.

13. Show that there is an infinite area between any two hyperbolas
x2 y2 = r1

2 and x2  y2 = r2
2, x > 0, r1 > 0, r2 > 0.

Hint. Use the change x = r cosh t, y = r sinh t .

14. Identify the domains and evaluate their areas:
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(i) 




22

1 2

x

x

dydx (iii)  
2

4

sec

0

arctg ta

rdrdt


(ii)  




2

0

22 ya

ya

dxdy (iv)  


2

2

)cos1(




ta

a

rdrdt

Answers. (i)
2

9
;(ii) )2(

4

2


a

; (iii)
2

9
; (iv) )8(

4

2


a

.

15. Find the volume of the body bounded by the xyplane, the sphere
x2 + y2 + z2 = a2 and the cylinder x2 + y2 = ax .
Hint. Independently of the use of a double or a triple integral, the volume is

expressed by the integral  
D

dxdyyxa 222 , where D is the interior of

the disc x2 + y2 = ax. Passing to polar coordinates, when D is bounded by

r = a cost, t 






 


2
,

2
, it reduces to

)43(
9

32

2

cos

0

22 











 






a
dtrdrra

ta

.

16. Using the Green's formula, evaluate

I =  dyyxxxyydxyx


 )ln( 2222 ,

where γ consists of the graphs of y = cos x and y = sin x for x between
4



and 45 .

Hint. I = .
4/5

4/

sin

cos

22 dxdyydxdyy

D

x

x
  



 












17. Evaluate the line integral I = 





22 yx

ydxxdy
, where γ is a circle traced n

times counter-clockwise, and:
a) the origin is lying outside γ 
b) the origin is lying inside γ .
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Hint. a) According to Green's formula, I = 0. b) The Green's formula is not
valid any more, but a direct calculation of the line integral gives I = 2π.

18. Find the mass and the center of gravity of the solid body bounded by
the paraboloid y2 + 2z2 = 4x and the plane x = 3, whose density is

ρ(x, y, z) =   121


 x .

Hint. The mass is M = dxdydz
x

dxdydz
xD

D
  








3

0
][21

1
 , where D[x] is

an elliptic lamina of semi-axes 2 x and x2 , hence the double integral is

a(D[x]) = 2πx 2 . The coordinates of the center of gravity are

xG = 
D

dxdydzzyxx
M

),,(
1

 ,

and yG = zG = 0 (because of symmetry).

19. A solid circular cone has the radius of the base equal to R, the altitude
h, and a constant density ρ. Find its moment of inertia relative to a diameter  
of the base.
Hint. Take the plane of the base as xoy and the axis of symmetry as oz.

Evaluate Ix =  
D

dxdydzzy )( 22 using cylindrical coordinates. The

result is Ix = )32(
60

22
2

Rh
hR




.

20. Show that the force of attraction exerted by a homogeneous sphere on
an external material point does not change if the entire mass of the sphere
is concentrated at its center.

Hint. Let M (=
3

4
πR3 γ) be the mass of the sphere of density γ and radius R.

Putting the origin of the coordinates in the center of the sphere, and the
mass m on the ozaxis, at the distance L to the origin, in cylindrical
coordinates, the distance between m and the current point (r, t, z) of the

sphere (r  R) will be d = 22 )( zLr  . The elementary force has the

value ΔF = k
2d

vm 
, where Δv = r Δr Δt Δz. Because of symmetry, we are

interested in finding the zcomponent of this force

ΔFz = ΔF cos( zd , ) = ΔF .
d

zL 

Evaluating the triple integral, it follows that F = k 2LmM .
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§ VII.3. IMPROPER MULTIPLE INTEGRALS

Up to now we have considered multiple integrals of bounded functions
on compact domains in Rp. These integrals correspond to the definite

integral on R, and they are called integrals on compact domains. As in the

case of a simple integral on an interval of R, there are situations when we

must evaluate multiple integrals of non-bounded functions, or on
non-bounded sets. All these situations are included in the study of
integrability on non-compact sets.
3.1. Definition. Let Ω  Rp be a non-compact domain for which each

bounded part of the frontier is negligible. We say that a sequence (Dn)nN

of measurable compact domains (briefly m.c.d.) is exhausting Ω iff for any
compact K  Ω there exists n0  N such that K  Dn for all n  n0 .

As for arbitrary sequences of sets, we say that (Dn)nN is

increasing iff Dn  Dn+1 for all n  N.

3.2. Examples. (i) The domain Ω = R3 is exhausted by each of the

sequences (Dn)nN , (En)nN and (Fn)nN of m.c.d., where

Dn = {(x, y, z)  R3 : x2 + y2 + z2
 n2}

En = {(x, y, z)  R3 : |x| + |y| + |z| n}

Fn = {(x, y, z)  R3 : max{|x|, |y|, |z|} n}

(ii) The sequence of m.c.d. (Dn)nN of the form

Dn = {(x, y) R2 :
2

1

n
 x2 + y2

 1} is exhausting the non-compact

domain Ω = S(0, 1) \ {(0, 0)}, which is the unit disk without center.
(iii) In the plane (ρ, θ), the infinite band Ω = [0,  ) x [0, 2π] is exhausted
by the sequence of m.c. domains of the form

Dn = {(ρ, θ) R2 : 0  ρ n, 0   θ2π}.

3.3. Definition. Let Ω  Rp be a non-compact domain, and let f : Ω  R

be integrable on each m.c.d. D  Ω. We say that f is improperly integrable
on Ω iff for every increasing sequence of m.c.d., (Dn)nN, which is

exhausting Ω, the sequence

N
















nDn

fd is convergent (see later that its

limit does not depend on the particularly chosen sequence (Dn)nN). In

such a case we note

 





nD
n

fdfdlim

and we call it improper integral of f on D. Alternatively we say that the
integral of f on Ω is convergent.
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The correctness of the above definition is based on the following
property:

3.4. Proposition. If f is (improperly) integrable on Ω, then 


fd does not

depend on the particular increasing and exhausting sequence of m.c.
domains (Dn)nN, for which we calculate the limit of numerical sequence

N
















nDn

fd .

Proof. Let (Dn)nN and (En)nN be two increasing sequences of m.c.

domains which exhaust Ω. By hypothesis, I =  


nD
n

fdlim and

J =  


nE
n

fdlim exist. The problem is to show that I = J.

In fact, because both (Dn)nN and (En)nN are increasing and exhausting,

for each n  N there exists k  N such that Dn  Ek. Similarly, for k  N

there exists m  N such that Ek  Dm, and for m  N there exists l N

such that Dm  El, etc. On this way we obtain an increasing and exhausting
sequence of m.c. domains

D1  ...  Dn  Ek  Dm  El  ...
for which, according to the hypothesis, the sequence of integrals

 

1D

fd ,...,  

nD

fd ,  

kE

fd ,  

mD

fd ,  

lE

fd ,....

is convergent. Because this convergent sequence contains subsequences of
the convergent sequences

N
















nDn

fd and

N
















nEk

fd ,

it follows that all these sequences have the same limit, hence in particular
we obtain the designed equality I = J. }

3.5. Remarks. (i) Because R is a complete metric space, the sequence

N
















nDn

fd is convergent if and only if it is fundamental. In addition,

because (Dn)nN is an increasing sequence, and the multiple integral is

additive relative to the domains, the above theorem may be formulated as

follows: The integral 


fd is convergent if and only if there exists an



Chapter VII. Multiple integrals

84

increasing and exhaustive sequence (Dn)nN of m.c.d., such that for

any ε > 0 there exists n(ε)  N such that for any n > n(ε) and m  N we

have | 
 nmn DD

fd

\

 | < ε.

(ii) Taking as model the simple improper integrals, the study of the
multiple improper integrals can be done in terms of numerical series with

elements of the form 




nn DD

fd

\1

. The general properties of the multiple

integral remain valid for improper integrals:
3.6. Proposition. (i) If f, g : Ω  R are improperly integrable on Ω and

α, β  R , then αf + βg is also integrable on Ω and

  
  

 gdfddgf )( (linearity)

(ii) Let Ω1, Ω2 and Ω = Ω1  Ω2 be non-compact domains for which

 21


Ø. If f : Ω  R is improperly integrable on Ω1 and Ω2 , then it

is integrable on Ω and




fd = 




1

fd + 




2

fd (additivity relative to the domains).

Proof. (i) The same relation holds on any compact K  Ω.
(ii) If (Dn)nN and (En)nN are increasing and exhausting sequences of

m.c.d.s for Ω1 and Ω2 , then (Dn  En) nN is increasing and exhausting for

Ω, and






nn ED

fd =  

nD

fd +  

nE

fd

holds for all n N. }

In particular, the convergence of improper integrals of a positive function
can be easily studied:
3.7. Theorem. (Boundedness criterion of convergence) The positive
function f : Ω  R+ is improperly integrable if and only if there exists an

increasing and exhausting sequence (Dn)nN of m.c.d.s for which the

sequence
N










nDn

fd is bounded.

Proof. Because f is positive and (Dn)nN is increasing, it follows that the

sequence
N










nDn

fd is increasing too, hence it is convergent if and only

if it is bounded. }
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3.8. Proposition. (i) Let the functions f, g : Ω  R+ satisfy f  g. If f and

g are integrable on Ω, then 


fd  


gd .

(ii) If f : Ω  R+ is improperly integrable on Ω, and on some subset

Ω'  Ω, then the following inequality holds






'

fd  


fd .

Proof. (i) For every measurable compact domain K  Ω, we have

 

K

fd   

K

gd .

(ii) Let us consider h : Ω  R, of values,

h(x) =








'.\xif,0

'xif1

Of course 0  hf  f and h f = f on Ω '. Because f is integrable on Ω, and

hf is integrable on Ω', according to (i) we obtain 


hfd  


fd .

It remains to see that 


hfd = 




'

fd . }

3.9. Remark. In the case of a simple improper integral on domains I  R,

we have seen that 
I

dxxf )( may be convergent without 
I

dxxf |)(| , so it

makes sense to discuss about semi-convergence, and absolute convergence.
This property has no analogue in the theory of multiple integrals. In fact,

according to the following theorem, the integrals  

D

fd and  

D

df || are

simultaneously convergent (respectively divergent). Consequently, it is a
nonsense to speak of semi-convergent improper multiple integrals. It is not
wrong to speak of absolutely convergent integrals, but this notion coincides
with that of simple convergence.

In order forms to study the relation between "convergence" and "absolute
convergence" for multiple integrals for arbitrary f : Ω  R, we will define

the positive and the negative part of f by

f+ =
2

1
[| f | + f ]; f =

2

1
[| f |  f ].

It is clear that both f+ and f are positive, but smaller that | f |. In addition,
we obviously have f = f+  f , and | f | = f+ + f .

3.10. Theorem. Let us consider that f : Ω  R is integrable on any m.c.d.

D  Ω. Then f is improperly integrable on Ω if and only if | f | is.
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Proof. At the very beginning we mention that f is properly integrable on
any m.c.d. D  Ω iff | f | is , so the statement of the theorem essentially
refers to the improper integrability on the non-compact domain Ω. In fact,
for arbitrary x', x"  D we have

| |f(x") |  | f(x') | |  |f(x")  f(x')|,
hence | f | has a smaller oscillation than f on any division of D. It remains to
use the Darboux criterion of integrability.

Let us suppose that | f | is integrable. Because f+ , f  | f |, according to
proposition 38, the integrability of | f | implies that of f+ and f . Using the
property of linearity, it follows that f is also integrable.

Conversely, let us suppose that f is improperly integrable on Ω, but | f | is
not integrable. Since | f |  0, this means that for any sequence (Dn)nN of

monotonically exhausting m.c.d.s in Ω, we have 


df

nD
n

||lim .

By rearranging the convenient indices, if necessary, we can consider that
the successive terms Dn and Dn+1 are chosen so that






1

||

nD

df > 3  

nD

df || + 2n

for any n  N. Denoting An = nn DD \1 , and using the additivity of the

multiple integral, this inequality becomes  

nA

df || > 2  

nD

df || + 2n for

all n  N. Because f (and also |f|) is properly integrable on Dn, it follows

that f+ and f are also properly integrable, and since |f| = f+ + f, we obtain

 

nA

df || =  

nA

df +  df

nA

.

Now let us suppose that

 

nA

df   df

nA

. (*)

In this case

2  

nA

df   

nA

df ||

hence, according to the previous inequality,

 

nA

df >  

nD

df || + n .

Now, let Bn be a closed part of An on which f+ = f, such that

 

nA

df =  

nB

fd . Then  

nB

fd >  

nD

df || + n .
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Adding this inequality to the obvious one  

nD

fd >   

nD

df || , we obtain






nn BD

fd > n .

Similarly, if instead of (*) we admit its contrary, we would obtain that






nn BD

fd < n.

Finally, it remains to see that (En)nN, where En = Dn  Bn is an

increasing and exhausting sequence of m.c.d., for which |  

nE

fd | > n, hence

the sequence (  

nE

fd )nN cannot be convergent. }

3.11. Remarks. (i) Because the study of the improper integrability of a
positive function (like | f |) is easier, the above theorem simplifies the
problem of convergence for the integral of functions which do not maintain
the sign.
(ii)The convergence of a multiple integral is sometimes considered in the
sense of the principal value. This means that the increasing and exhausting
sequence of m.c.d. (Dn)nN consists of "spherical sets". More exactly:

a) when Ω = Rp, we take Dn = {x Rp : ||x||  n}, and

b) when Ω = K \ {x0}, when K is a compact domain for which x0 

K ,

then

Dn = K \ { x Rp : ||x  x0|| <
n

r
},

where r is chosen in order to have S(x0 , r) 

K .

(i) Before calculating an improper multiple integral it is necessary to
check the convergence of the respective integral, since a particular way of
carrying out the calculation may lead to a convergent process, even though
the integral is divergent. Therefore it is advisable to use the methods of
calculating multiple integrals (iteration, change of variables, etc.) just on
compact domains, but not on the whole non-compact domain. In other
terms, the simple integrals, which occur when using some method of
evaluating a multiple integral, might be convergent even for non-
convergent multiple integrals.
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PROBLEMS § VII.3

1. (i) Show that I = 


2

22 )(

R

dxdye yx is convergent;

(ii) Evaluate I using polar coordinates;

(iii)Deduce the value of J = 




 dxe x 2

.

Hint. Function f : R2  R, expressed by f(x, y) =
22 yxe  is positive,

hence it is sufficient to show that all the integrals

In = 


nD

yx dxdye
22

,

are bounded, where Dn = {(x, y)  R2 : x2 + y2  n2}, n  N. In fact, using

polar coordinates (r, t) we obtain

In = 2π   )1(
22

0

n
n

r erdre .

(ii) I =
n

lim In = π.

(iii) Iterating in Cartesian coordinates we obtain J2 = I, hence J =  .

2. Show that function f : R2  R, of values f(x, y) = sin (x2 + y2) is not

improperly integrable on R2.

Hint. If we note
Dn ={(x, y) R2 : x2 + y2  2n π }

and

En = {(x, y)  R2 : x2+y2
 2n π +

2


} ,

then, for any n  N, we have  

nD

fd = 0, while  

nE

fd = π.

3. Study the convergence of the integrals

I(α) = 
 

2
)( 22 yx

dxdy
, and J(α) = 

 
3

)( 222 zyx

dxdydz
,

where
Ω2 ={(x, y)  R2 : x2 + y2

 1},

and
Ω3 = {(x y, z)  R3 : x2 + y2 + z2

 1}, α  R.
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Hint. Both I(α) and J(α) refer to positive functions, hence we can apply
theorem 3.7. Denoting Dn = {(x, y)  Ω2 : 1  x2 + y2  n2}, n  N*, and

passing to polar coordinates, we obtain

In(α) = 


nD yx

dxdy
)( 22

=2 π ]1[
1

)1(2

1

21 



  ndrr

n

,

hence I(α) is convergent for α > 1, and divergent for α  1.
Similarly, considering En = {(x y, z)  Ω3 : 1 x2 + y2 + z2

 n2}, where
n  N*, and using spherical coordinates, we obtain

Jn(α) =  
nE

zyx

dxdydz

)( 222
=4 π ]1[

23

4 23

1

21 



  nd

n

,

hence J(α) is convergent for α >
2

3
, and divergent if α 

2

3
. The

cases α = 1 in In, and α =
2

3
in Jn, must be separately discussed.

4. Study the convergence of the integrals

I(β) = 



2

)( 22 yx

dxdy
, and J(β) = 




3

)( 222 zyx

dxdydz
,

where
Σ2 = {(x, y)  R2 : 0<x2 + y2

 1},

Σ3 = {(x y, z)  R3 : x2 + y2 + z2
 1}

and β is a real parameter.

Hint. On any compact Kn ={(x, y)  Σ2 : x2 + y2


2

1

n
}, n  N*, using polar

coordinates, we have

In(β) = 


nK yx

dxdy
)( 22

= 2 π[1n2(β  1)]

hence I is convergent for β < 1 .

Similarly, for any compact Ln ={(x y, z)  Σ3 : x2 + y2 + z2


2

1

n
},

n  N*, in spherical coordinates we obtain:

Jn(β) = ]1[
23

4

)(
32

222










 n
zyx

dxdydz

nL

,

hence J is convergent for β <
2

3
.
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5. Test for convergence the improper double integral

I = 


 dxdyyx 22ln , where Ω = {(x, y) R2 : 0  x2 + y2
 1}.

Hint. Take Dn = {(x, y) Ω : x2 + y2 
2

1

n
}, n  N*, and use polar

coordinates in order to obtain

In =
24

11

2

ln

2
ln

22
22 










 nnn

n
dxdyyx

nD

.

6. Test for convergence the integrals:

I =  

2

22

,)cos( 22)(

R

dxdyyxe yx where ,0 and

J = 





,

)(

)ln(
222

222
dxdydz

zyx

zyx
where ,0 and

Ω= {(x y, z)  R3 : 0< x2 + y2 + z2
 1}.

Hint. I is convergent for any α > 0, since |cos (x2 + y2)|  1. J is divergent

for all α <
2

3
; evaluate it in spherical coordinates.

7. Test for convergence the integral 




2

22

22
R

dxdy
yx

yx
e yx and

evaluate it using its principal value.

Hint.
22 yx

yx




 2, hence we can apply the comparison criterion. The

principal value is 0.

8. Show that the integral I = dxdy
yx

yx






2
22

22sin

R

is divergent.

Hint. The integral is not “absolutely” convergent (see Theorem 3.10), i.e.

dxdy
yx

yx

nD





22

22 |sin|
= 2π   

n

n
dr

r

r

0

|sin|
.

However, on particular domains like Dn = {(x, y)  R2 : x2 + y2
 n},

we have In = dxdy
yx

yx

nD
 


22

22sin
= 2π 

n

dr
r

r

0

sin 2 .
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CHAPTER VIII. SURFACE INTEGRALS

The surface integrals extend the notion of double integral in the same
manner in which the line integrals extend the simple integrals on R. We

will consider only surfaces in R3, many aspects being similar for the higher

dimensional case. At the beginning, we have to analyze the notion of
surface.

§ VIII.1. SURFACES IN R3.

From the mathematical point of view, the notion of surface (as well as
that of curve) reduces to a class of functions, which represent different
parameterizations. From the practical point of view, the curves and the
surfaces are particular objects (sets) in R3 and R2, the problem of finding

the most adequate parameterization is of capital importance in calculus.
1.1. Definition. We say that the set S  R3 is a surface iff it is the image

of a domain (usually open and connected, but sometimes closed!), D  R2

through a function φ : D  R3, called parameterization of S, i.e. S = φ(D).

More precisely, any parameterization is a vector function of two variables
and three components, i.e. for each (u, v)  D, we note the
parameterization by φ(u, v) = (x(u, v), y(u, v), z(u, v))  R3, so that the

surface becomes
S = {(x(u, v), y(u, v), z(u, v))  R3, (u, v) D}

Their specific classes of parameterizations describe the different types of
surfaces.
1.2. Types of surfaces. We say that the surface S is simple iff its
parameterization φ is 1 : 1. Similarly, S is called smooth (continuous,
Lipschitzean, etc.) iff φ  C1

R
3 (D) (φ  C0

R
3 (D), φ  LipR

3 (D), etc.).

A smooth surface S is said to be non-singular, iff the rank of the
Jacobian matrix of its parameterization φ is equal to two, i.e.:

rank J φ(u, v) = rank











































),(),(),(

),(),(),(

vu
v

z
vu

v

y
vu

v

x

vu
u

z
vu

u

y
vu

u

x

= 2.

1.3. Remark. In this chapter we will consider only simple, smooth and
non-singular surfaces, which will be called regular. Because each surface
admits more parameterizations, one of the fundamental problems in the
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study of surfaces is to find the intrinsic properties, i.e. those properties,
which are independent of parameterization. More exactly, a property of a
regular surface S is considered intrinsic iff it is maintained by any change
of parameterization realized by a diffeomorphism of strict positive
Jacobian. It is clear that the precise meaning of this notion is obtained by
defining the class of "equivalent" parameterizations.
1.4. Definition. Let φ : D  R3 and ψ : H  R3 be two parameterizations

of the same surface S in R3. We say that φ and ψ are equivalent and we

note φ ~ ψ, iff there exists a diffeomorphism T : H  D of components

Hba
bav

bau









),(,

),(

),(

such that ψ  =  φ T, and

Det J T =

),(),(

),(),(

ba
b

ba
b

ba
a

ba
a

















>0

at any (a, b)  H. The diffeomorphism T is also called change of
parameters on the surface S.
1.5. Remarks. (i) It is easy to verify that ~ is in fact an equivalence. To be
more rigorous, we identify the surface S with its class of equivalent
parameterizations.
(ii) When we have a parameterization of a surface S, we consider that S is
explicitly given. There are many practical cases when the surface is
described by a condition of the form

Φ(x, y, z) = 0,
which is called implicit equation of the surface. The problem of finding an
explicit form (equation), i.e. to write (x, y, z) = φ(u, v) can be generally
solved only locally, using the implicit function theorem.
(iii) A particular, but very convenient parameterization of a surface S  R3

is expressed by a function z = f(x, y). More exactly, D = Prx,y(D), and
f : D  R3 stands for the parameterization φ(x, y) = (x, y, f (x, y)).

1.6. The tangent plane. If (u0, v0)  D, then the corresponding point
M0 = φ(u0, v0)  S may be also specified by its position vector

r


= x(u0, v0) i


+ y(u0, v0) j


+ z(u0, v0)k


,

where { i


, j


, k


} is the canonical base of R3.

The curve

0uu = {φ(u0, v) : (u0, v) D}

is called curve of parameter v on S (or coordinate curve of type
uconstant). Similarly,

0vv = {φ(u, v0) : (u, v0)  D}
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is called curve of parameter u on S (respectively, curve of type vconstant).
Obviously, φ|D[u 0 ] is a parameterization of

0uu , while φ|D[v 0 ] is a

parameterization of
0vv , where

D[u0] = {v  R : (u0, v)  D}

is the section of D at u0, and similarly,
D[v0] = { u  R : (u, v0)  D}

is the section of D at v0.
The vectors (which are well defined for regular surfaces)

,k
u

z
j

u

y
i

u

x
ru
















 and

k
v

z
j

v

y
i

v

x
rv


















represents the tangent vectors to the curves of coordinates u, respectively v,
at the current point (x, y, z) = φ(u, v)  S .

Since S is non-singular, the normal vector

vu rrn




is defined at any point of the surface. Using it, the tangent plane of the
surface is defined by ( r


 0r


)  n


, i.e.

-- 000

v

z

v

y

v

x

u

z

u

y

u

x

zzyyxx



























= 0.

Even if the vectors ur


and vr


depend on parameterization, the tangent

plane is uniquely determined at each point of a regular surface.
1.7. Proposition. The tangent plane to S at M0 does not depend on
parameterization.
Proof. Let φ ~ ψ be two parameterizations of S, and let n


φ(M0) and n


ψ(M0)

be the vectors normal to S at M0  S, expressed by the parameterizations φ
and ψ. A direct calculation shows that 

n

φ(M0) = k n


ψ(M0),

where k = Det JT  0, i.e. n

φ(M0)|| n


ψ(M0).

1.8. Corollary. (i) If S admits a parameterization z = f (x, y) on its
xyprojection, then the normal to S has the components n


= (p, q, +1),

where p = f 'x, and q = f 'y. For convenience, if the sense of n


doesn’t
matter, i.e. the surface is non-orientated, then we can take n


= (p, q, 1).

(ii) If S is implicitly defined by the equation Φ(x, y, z) = 0, then the normal

takes the form n


= (Φ 'x,Φ 'y, Φ 'z) since p = 
z

x

'

'




, q = 

z

y

'

'




.
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The equations of the tangent plane at M0(x0, y0, z0)  S will be
z  z0 = p(xx0) + q(yy0),

respectively,
(x  x0) Φ'x + (y  y0) Φ'y + (z  z0) Φ'z = 0.

The proof reduces to a simple calculation and will be omitted.
Another useful notion in the study of a surface is that of area, which is

introduced by the following construction:
1.9. Definition. Let S be a regular surface of equation z = f (x, y), where the
domain D = Prx, y(S) of f is a measurable compact domain (m.c.d.). To any
division δ = {D1, ..., Dn} of D in m.c.d., we attach a division

Σδ = {S1, ..., Sn}

of S, where, for all i = n,1 , we have

Si = {(x, y, f(x, y))  S : (x, y)  Di}.
In each sub-domain Dk we choose a point (xk, yk)  Dk, so that

Mk(xk, yk, f(xk, yk))  Sk

for all k = 1, ..., n, and we note by πk the tangent plane to S at Mk. In each
such tangent plane we delimitate a domain

Tk = {(x, y, z)  πk : (x, y)  Dk}, k = 1, ..., n.
which is measurable (i.e. it has an area) as image of a m.c.d. Dk through
Pr1

xy . Let a(Tk) denote the area of Tk, for all k = 1, ..., n .
We say that S has an area (is measurable, etc.) iff there exists the (finite)

number

A = 


n

k
kTa

10||||
)(lim ,

which is the same for all sequences of divisions for which ||δ||  0, and for
all possible choices of this "intermediate" points Mk  Sk, k = 1, ..., n. In
this case we note A = a(S), and we call it area of S.

For the evaluation of the area of a surface we mention:
1.10. Theorem. Let S be a regular surface for which D = PrxyS is a m.c.d.
in R2, and z = f (x, y), where f : D  R is the equation of S. Then S has

area and it is expressed by the double integral

a(S) = dxdyff

D

yx 
2/2/1 . (1)

Proof. Let θk be the angle between the oz axes and the normal kn


at the

point Mk  Sk  S. Using θk, can specify the relation between the area
a(Dk) of Dk and that of Tk, namely

a(Dk) = a(Tk) cos θk.

We may find of the value of cos θk from the formula kn


k


= || kn


|| || k


||cos θk,

while gives cos θk = [1+ ),(),(
2/2/

kkykkx yxfyxf  ]1/2 for all k = 1, ..., n.

Consequently,
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)(),(),(1)(
1 1

2/2/
k

n

k

n

k
kkykkxk DayxfyxfTa  

 

has the form of a Riemannian sum of a double integral on D, as mentioned
in the theorem. The existence of this integral is assured by theorem 7, §2,
chapter VII, since f has continuous partial derivatives on D, and D is a
m.c.d.

The area of a surface may be expressed by other formulas which make
use of some specific notations. More exactly, if φ : H  R3 is a

parameterization of S, of components x(u, v), y(u, v), z(u, v), and if we note

A =
),(

),(

vuD

zyD
, B =

),(

),(

vuD

xzD
, C =

),(

),(

vuD

yxD

then the normal becomes n


= A i


+ B j


+Ck


, and

|| vu rr


 || = 222 CBA 

holds at any point M  S.
Other useful notations are the Gauss coefficients:

E =
222

2








































u

z

u

y

u

x
ru


F =
v

z

u

z

v

y

u
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G =
222
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A direct computation shows that A2 + B2 +C2 = EG  F2.
1.11. Corollary. Let S be a smooth surface for which D = Prxy(S) is a
m.c.d., and let z = f(x, y) be the equation of S. If φ : H  R3 is another

parameterization of S, then the following formulas hold:

a(S) =  

H

dudvCBA 222 (2)

a(S) =  

H

vu dudvrr ||||


(3)

a(S) =  

H

dudvFEG 2 (4)

Proof. Let T : H  D be a transformation (diffeomorphism) of components
x = α(u, v) and y = β(u, v), which relates the parameterizations. More
exactly, (x, y, z) = φ(u, v) means















)),(),,((

),(

),(

vuvufz

vuy

vux
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for all (u, v)  H. Using the partial derivatives of z,

v
f

v
f

v

z

u
f

u
f

u

z

yx

yx

































//

//

we obtain
C

A
f x / , and

C

B
f y / f'y . Changing the variables (x, y)  (u, v)

in (1) we obtain

a(S) = dxdyff

D

yx 
2/2/1 = ,

1222 dudv
C

CBA T

E

JDet ,

which represents (2), since C = Det JT .
Formula (3) is a simple transformation of (2) because

vu rr


 = A i


+ B j


+Ck


.

Finally, (4) follows from (3) as a consequence of the identity
|| vu rr


 ||2 = || ur


||2|| vr


||2  [ vu rr


]2 . }

More than the equivalence of the formulas (1), (2), (3) and (4), the area of
a surface is an intrinsic characteristic of the surface, i.e. it is the same for
all equivalent parameterizations.
1.12. Theorem. If S is a regular surface which has a parameterization on
the m.c.d. D = Prxy(S), then any other equivalent parameterization of S
gives the same value for the area of S.
Proof. Let φ : H  R3 and ψ : L  R3 be equivalent parameterizations of

the regular surface S, of components
φ(u, v) = (x(u, v), y(u, v), z(u, v)), and
ψ(a, b) = ( x~ (a, b), y~ (a, b), z~ (a, b)),

and let A, B, C, respectively A
~

, B
~

, C
~

be the corresponding coefficients.
According to the above corollary, both double integrals

 

H

dudvCBA 222 , and

dadbCBA

L
  222 ~~~

represent the same

a(S) = dxdyff

D

yx 
2/2/1 .

We mention that the proof could be based on the relations A
~

= AΔ;

B
~

= BΔ; C
~

= CΔ, where Δ = Det JV, and V : L  H is a diffeomorphism
which realizes the change of parameters (a, b)  (u, v). }
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PROBLEMS § VIII.1.

1. Find the area of the triangle cut out by the coordinate planes from the

plane 1
c

z

b

y

a

x
, where a, b, c  R+.

Hint. The xyprojection of S in D ={(x, y)  R2 : x 0 , y 0 , 1
b

y

a

x
}

and the equation of the surface has the form z = f(x, y), where

f(x, y) = c(1
a

x


b

y
).

Consequently, a(S) = dxdyff

D

yx 
2/2/1 = 222222

2

1
accbba  .

2. Compute the area of the helicoidal surface of polar equations















ktz

try

trx

sin

cos

, 0  t 
2


, 0 < a  r  b, where a, b, k  R*

+.

Hint. Prxy(S) = {(x, y) R2 : a2  x2 + y2  b2, x 0 ,y 0 }. Evaluate the

double integral which represents the area in polar coordinates.

3. Let C be the cylinder of equation x2 + y2 = ax, and let S be the sphere
of equation x2 + y2 + z2 = a2. Evaluate the area a(S) if:
(i) S is that part of C which is cut out by S

(ii) S is the part of S inside C .

Hint. (i) Consider y = f(x, z) on Prxz(S) = {(x, z)  R2 : 0  x2 + z2  a, x > 0}.

(ii) Take z = f(x, y) on Prxy(S) = {(x, y) R2 : ( x  )2/(a )2 + y2  42a } .

4. Calculate the area of the torus obtained by rotating the circle of center
(R, 0,0) and radius r, where 0 < r < R, lying in the xoyplane, around the
oyaxis.
Hint. S is the image of D = {(u, v)  R2 : 0  u, v  2π} through φ of

components x = (R + rcos u)cos v, y = r sin u, and z = (R + rcos u)sin v,
hence || vu rr


 || = r(R + rcos u), and a(S) = 4 π2Rr.

5. Compare the areas of the parts of a paraboloid x2 + y2 = 2az (circular)
and x2  y2 = 2az (hyperbolic), cut out by the cylinder x2 + y2 = R2.
Hint. Use polar coordinates. The areas are equal.
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6. Find the area of an ellipsoid of half axes a, b, c.
Hint. S = φ(D), where D = {(u, v) R2 : u  [0, π], v  [0, 2 π]}, and

φ(u, v) = (a sin u cos v, b sin u cos v, c cos u). Use the formula

a(S) =  

D

dudvCBA 222 .

7. (Schwartz's example) Let S be the lateral surface of a cylinder of
radius r and altitude h. By dividing h into n3 equal parts, n  N, using

planes parallel to the bases, we obtain n3 + 1 circles C0, C1, ...,Cn
3 on S. On

C0 we consider 2n equidistant points. The generators corresponding to
these points meet the other circles in 2n points denoted with similar indices.
Now, from each circle Ck we delete the points with even indices if k is odd,
and the points with odd indices if k is even. Each pair of remaining
successive points on the same circle and the closest point of a neighboring
circle determine a triangle Δ. Evaluate the area a(Δ), show that the sum of 
all these areas tends to  when n   , and explain why this sum does
not approximate a(S) .
Hint. There are 2u·u3 = 2u4 such triangles of areas

a(Δ) = 3
2

3
22 )cos1()(sin2

2

1 













kn

n

h

n
rr

n

for some k > 0. The explanation consists in making evident the different
directions of the normal vectors to Δ and to S (see also [NS] vol. II).
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§ VIII.2. FIRST TYPE SURFACE INTEGRALS

Similarly to the line integrals of the first type, the surface integral of the
first type refers to scalar functions defined on domains, which contain the
surface. They are useful in evaluating the mass of a lamina, its gravity
center, inertia moments, or forces of interaction.
2.1. The construction of the integral sums. Let S be a regular surface of
parameterization φ: D R3, where D is a m.c.d. in R2. Let also U :  R

be a bounded scalar function, where  is a domain in R3 which contains S

(it is sometimes sufficient to ask U : S  R, as for example when U is the

density of the material surface S). If δ = {D1, ..., Dn} is a partition of D,

then we consider the subsequent partition Σδ = {S1, ..., Sn} of S, and a
system S = {Mk  Sk : k = 1, ..., n} of "intermediate" points, exactly as for
evaluating the area of S. Then the sums

σU (δ, S ) = 


n

k 1

U(Mk) a(Sk)

represent the integral sums of the first type of U on S .
2.2. Definition. We say that U is integrable on S iff there exists (finite)

I =
0||||

lim


σU(δ, S ),

independently of the sequence of divisions for which ||δ||  0, and
independently of the systems of intermediate points. More exactly, for any
ε > 0, there exists η > 0 such that

| σU(δ, S )  I | < ε

holds whenever ||δ|| < η, and for arbitrary S . In this case we say that I is
the surface integral of U (of the first type), and we note

I = 
S

dSzyxU ),,( ,

or alternatively

I =  

S S

UdUdS  , etc.

One of the fundamental problems is to specify classes of integrable
functions, and methods of evaluating the integrals.
2.3. Theorem. Let S be a regular surface, and U : S  R be a continuous

function. Then, U is integrable on S, i.e. there exists the surface integral of
the first type of U on S, and

dudvvuCvuBvuAvuUUdS

S D
   ),(),(),(),)(( 222 (1)

where φ : D  R3 is a parameterization of S.
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Proof. Because D is a m.c.d. and V = (U  φ) 222 CBA  is continuous,
there exists the double integral in the right side of the claimed relation. Let
δ = {D1, ..., Dn} be a division of D. Using the mean-value theorem for
double integrals we obtain

a(Sk) =  dudvCBA

kD

222

)()~,~()~,~()~,~( 222
kkkkkkk DavuCvuBvuA 

where ( kk vu ~,~ )  Dk. Consequently, considering an arbitrary system of

intermediate points S = { φ(uk, vk) : k = 1, ..., n}, the integral sums take
the form

σU(δ, S ) = 


n

k 1

U(φ(uk, vk))a(Sk) =

= 


n

k 1

(U φ)(uk, vk) )()~,~()~,~()~,~( 222
kkkkkkk DavuCvuBvuA  .

On the other hand, since V is integrable on D, for every ε > 0 there
exists η > 0 such that for ||δ|| < η, and for arbitrary S, we have

2
)(),)((

1


 

D

n

k
kkk DavuUVdudv  .

Now, we can evaluate

| 
D

Vdudv  σU(δ, S ) |   
D

n

k
kkk DavuUVdudv

1

)(),)(( 

.)~,~(),)(()(),)((
1

222

1

 


kk

n

k
kk

n

k
kkk vuCBAvuUDavuU 

The last modulus is less than
2


, since |U  φ| is bounded on D, and

222 CBA  is uniformly continuous on D . }

When defining the integral sums, the values of U on S, and the areas of
the surfaces Sk do not depend on parameterizations, hence the surface
integral is uniquely defined by S and U. In fact:
2.4. Corollary. The surface integral of the first type does not depend on
parameterization.
Proof. Let ψ : HR3 be another parameterization of S in the above

theorem, and let T : H  D be  the  diffeomorphism  for  which  ψ = φT.
Changing the variables (u, v) = T(a, b) in the double integral (1), we

obtain
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S H

dadbbaCBAbaTUUdS ),(
~~~

),)(( 222 .

Because A
~

= AΔ, B
~

= BΔ, C
~

= CΔ, where Δ = Det JT(a, b), we obtain

  

S H

dadbbaCBAUUdS ),(]
~~~

)[( 222 ,

i.e. different equivalent parameterizations of the surface give the same
value of the surface integral of the first type. }

2.5. Corollary. Using the notations in § VIII.1, the surface integral can be
expressed by the formula

  

S D

dxdyqpyxfyxUUdS 221)),(,,( , (2)

where z = f (x, y) is the equation of S, f : D  R, p = /
xf , q = /

yf . Other

forms of the same integral are

  

S D

vu dudvvurrUUdS ),(||]||)[


 , and (3)

  

S D

dudvvuFEGUUdS ),(])[( 2 . (4)

In fact, according to § VIII.1, where we have expressed the element of area
in several forms, we have seen that

222222 ||||1 FEGrrCBAqp vu 


.

2.6. Remark. So far, we have used the xyprojection to study the surfaces
and the surface integrals of the first type. Similar results may be obtained
for yz, or zxprojections. In practice, we can divide the given surface into a
finite number of surfaces, which admit such projections. This
decomposition is frequently necessary if the equation of the surface is
implicit.

The general properties of the first type surface integrals are common to
other types of integrals, namely.
2.7. Proposition. The surface integral of the first type is:
(i) linear relative to the function, i.e.

  

s S S

VdSUdSdSVU )( ;

(ii) additive relative to the surface, i.e.

  




21 1 2SS S S

UdSUdSUdS ,

where S1, S2 are regular surfaces without common interior points.
The proof is a simple reduction to the similar properties of the double

integral, and will be omitted.
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PROBLEMS § VIII.2

1. Evaluate the surface integral

I =  

S

dSzyx )(

where S is the surface of the cube 0  x  1, 0  y  1, 0  z  1 .
Hint. The integral on the faces z = 0 and z = 1, where dS = dxdy reduces to

     
1

0

1

0

1

0

1

0

1

0

1

0

3)122()1()( dxdyyxdxdyyxdxdyyx .

Similarly, we treat the other pairs of faces, so that I = 9.

2. Evaluate the integral  

S

dSzxyzxy )( , where S is that part of the cone

22 yxz  , cut out by the surface axyx 222  .

Answer. 4

15

264
a .

3. Find the mass of a material surface S of equation
2

22 yx
z


 , 10  z ,

which has the local density zzyx ),,( .

Answer. )361(
15

2



.

4. Evaluate the moment of inertia of a spherical surface of radius r and of
constant density ρ, relative to a diameter.

Hint. I =  

S

rdSyx 422

3

8
)( . The spherical coordinates are

advisable, since 222 CBA  = r2 sin θ, and I = 2πr4 




0

3sin d .

5. Calculate the moment of inertia, relative to the xOy plane, of that part of

the conic surface 22 yxz  , for which 10  z , if the local density is

xyzyx 1),,( .

Hint. By definition,  
SxOy dSxyzI )1(2 =  

D
dydxxyyx )1)((2 22 ,

where }1:),{( 222  yxyxD R . The result is
2

2
xOyI .
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6. Find the attraction force exerted by an uniform spherical surface on a
point-wise mass m located in the interior (exterior) of the sphere.

Hint. Fz = km ρ  



S

dS
rzyx

rz
2/3222 ])([

, where (0, 0, r) is the location

of m, ρ is the density of S, and k is depending on units. Using the spherical
coordinates x = R sin θ cosφ, y = R sin θ sin φ, z = R cosθ, where R is
the radius of the sphere, we obtain Fz = 2πkm ρ[R3I  rR2J], and

I = 









0
2222/322 )(

2

]cos2[

sincos

rRR

r
d

rrRR
(by parts), and

J =  











0
222/322 )(

2

]cos2[

sin

rRR
d

rrRR
.

Consequently, Fz = 0. Because of symmetry, we have Fx = Fy =0 too.

7. Find the potential created at (0, 0, 0) by an electric change of density ρ(x,

y, z) = 2 
22 yx

a


, distributed on a conical surface of equation

0  z = a  22 yx  , a > 0.

Hint. The potential is Φ = k 




S zyx

dSzyx

222

),,(
, where k depends on units. In

particular, dS = 2 dxdy. The surface integral can be reduced to a double
integral on D = Prxy(S), which can be easily evaluated in polar coordinates.
The searched potential is Φ = 0.
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§ VIII.3. SECOND TYPE SURFACE INTEGRALS

In this section we study the surface integral of a vector function, which
defined on the surface. In order to explain the meaning of this integral, we
start out with an example:
3.1. Example. (The flux of an incompressible liquid through a surface) Let
us consider that the domain   R3 is full of liquid, which is in stationary

movement. To describe this movement we use the so-called vector field of

speeds, V


:   R3, which defines the velocity

V


(x, y, z) = (V1(x, y, z), V2(x, y, z), V3(x, y, z))
at each point (x, y, z)   (not depending on time since the movement is
stationary). Now let S   be a (regular) surface, for which we need to
determine the quantity of liquid, which is passing over the surface in the
unit of time (also called flux). Obviously, evaluating this quantity supposes
a sense of the normal vector at each point of the surface, such that
specifying what "comes in" and what "goes out" to be possible (see the
orientated surfaces below).

Fig. VIII.3.1.

If we refer to a small part Sk  S, or to its corresponding approximation
Tk of the tangent plane πk at Mk  Sk, the seek quantity is contained in the

volume kv of a parallelepiped of basis Tk and side V


(Mk).

MkTk

x

z

y

n(Mk)

n






V (Mk)

k

a (Tk) cos k

a (Tk)cos k

a (Tk) cos k

0
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More exactly (see Fig. VIII.3.1), since n


(Mk)  πk, we have

vk = <V


(Mk), n


(Mk)> area(Tk) = ( V


n


) (Mk) a (Tk).
If Sk is an element of the partition δ = {S1, ...,Sn} of S, and Mk  Sk is an
intermediate point of the system S = {M1, ..., Mn}, then

v(δ, S ) =  
 


n

k

n

k
kkk TaMnVv

1 1

)())((


represents an approximation of the sought volume. Further on, if

n


= cos α i


+ cos β j


 + cos γ k


is the unit normal, then we can explicit the scalar product (V

 n


), and we

obtain

v(δ, S ) = 



n

k
kk TaMVVV

1
321 )())(coscoscos( 

= 



n

k
kxykkzxkkyzk TaMVTaMVTaMV

1
321 ))]((Pr)())((Pr)())((Pr)([ .

Because generally speaking, better approximations correspond to finer

partitions of the surface, it is natural to define the flux of V


through S as
v =

0||||
lim


v(δ, S ).

This example shows that before defining the general notion of surface
integral of second type, we must clarify the meaning of orientation on a
surface (compare to the orientation of a curve in § VI.1).
3.2. Orientated surfaces. As usually, an explicit writing of the above
formulas supposes some parameterization φ : D  R3 of S, when D  R2

is a measurable compact domain of the plane. According to the definitions
in § VIII.1, S is regular means that φ is 1 : 1, of class C1, and rank Jφ = 2 on
D. More exactly, S is defined by a class of such equivalent
parameterizations, where φ ~ ψ denotes the existence of a diffeomorphism 
T between the domains of φ and ψ such that Det JT  0. Consequently,
either Det JT > 0, or Det JT < 0, i.e. the class of all parameterizations can be
split into two subclasses, each of them consisting of those
parameterizations which are related by a "positive" diffeomorphism (Det JT

> 0). To orientate the surface S means to chose one of these subclasses of
parameterizations as defining the positive sense of the normal at each point
of S. These considerations are based on the following:
3.3. Proposition. Let φ : D  R3 and ψ : E  R3 be parameterizations of

the regular surface S, and let T : E  D be a diffeomorphism for which
ψ = φ  T. If n


φ(M) and n


ψ(M) represent the unit normal vectors at M S ,

corresponding to these parameterizations, then we have:
(i) n


φ(M) = n


ψ(M) if Det JT > 0 (T is positive)

(ii) n

φ(M) =  n


ψ(M) if Det JT < 0 (T is negative)
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Proof. Let Aφ (M), Bφ (M), Cφ (M) and Aψ (M), Bψ (M), Cψ (M) be the
differential coefficients corresponding to the parameterizations φ and ψ, at 
the current point M  S. Consequently, the unit normal vectors, which
correspond to these parameterizations, are

n

φ(M) = )(

222
M

CBA

kCjBiA










n


ψ(M) = )(
222

M
CBA

kCjBiA










.

Similarly to theorem 12 in §1 (chapter VIII), from ψ = φ  T we deduce
Aψ = A φΔ, B ψ = B φΔ,  and C ψ = C φΔ, where Δ = Det JT . }

3.4. Examples. 1) If S admits a parameterization z = f(x, y) on the
projection D=Prxy(S), then usually, the positive sense of the normal is that

for which the angle between oz (i.e. k


) and n


is in the interval [0,
2


].

2) If S is closed, then it divides the space into two parts, namely the interior
and the exterior of S. The positive sense of the normal is usually chosen
outwards. (However, the exact meaning of orientation and closeness is
obtained in much deeper theories, e.g. see [SL], [CI], etc.).
3) When referred to the vectors ur


and vr


, n


is orientated according to the

right-hand screw rule: by rotating the hand of the screw from ur


to vr


, the

screw is driven in the positive sense of n


. In this way the orientation of D
is carried to S.
4) The orientation on S can be referred to the particular sense, which is
defined on the frontier of S. In this case we apply the same right-hand
screw rule.
5) As an example of non-orientated surface we mention the famous Möbius
strip. It is obtained from a plane rectangle of sides l and L, where l<<L, by
gluing the smaller sides cross-wide (as sketched in Fig. VIII.3.2).

Fig. VIII.3.2

The resulting surface allows no 1:1 parameterization. The coordinates of
any point depend on the "face" on which the point is lying, even though we

C  B

A  D
A

B

C

D

A

BL

l

a) b)
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can pass from one face to another without touching the boundary.
Therefore we cannot specify a positive sense of the normal at any point of
the surface, i.e. the Möbius strip is not orientated.

The surface integral of the second type is defined by analogy to the above
notion of flux through an orientated surface:

3.5. The integral sums. Let V


:   R3 be a vector function on the

domain   R3, and let S   be a regular orientated surface of

parameterization φ : D  R3, where D  R2 is a measurable compact

domain (m.c.d). If δ = {D1, ...,Dn} is a partition of D, the corresponding
division Σδ = {S1, ..., Sn} of S consists of parts Sk = φ(Dk)  S. Choosing
Mk  Sk on each Sk, k = 1, ..., n, we obtain a system of intermediate points
S = {Mk : k=1, ..., n}. Let πk be the tangent plane at Mk to S, and let Tk be
the projection of Sk on πk, k = 1,..., n . The sum

SV ,
 ( δ, S ) =

=



n

k
kxykkzxkkyzk TaMVTaMVTaMV

1
321 ))]((Pr)())((Pr)())((Pr)([

is called surface integral sum of second type of V


on S.

3.6. Definition. We say that V


is integrable on S iff the above surface
integral sums of second type have a limit

I =
0||||

lim


SV ,
 ( δ, S ),

which is independent of the sequence of divisions with ||δ|| 0, and of the
choice of intermediate points. In this case we note

I =  

S

dxdyVdzdxVdydzV 321 ,

and we say that I is the surface integral of the second type of V


on S, also

called the flux of V


through S.
The following theorem indicates a class of integrable functions.

3.7. Theorem. Let S   be a regular orientated surface, and let

V


:   R3 be a vector function. If V


is continuous on S, then:

(i) V


is integrable on S, and
(ii) its surface integral (of the second type) reduces to a surface integral of
the first type according to the formula

 

S

dxdyVdzdxVdydzV 321 =  

S

dSnV


.

Proof. Because V


and n


are continuous on S, theorem 3 in §VIII.2 assures
the existence of the surface integral of the first type

I =  

S

dSnV


.
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Consequently, the problem reduces to show that for any ε > 0 there exists
η > 0 such that for any partition δ and S , for which ||δ|| < η, we have 

| SV ,
 ( δ, S )  I | < ε.

In fact, because V


· n


 is continuous there exists λ = 
S

sup |V


· n


|. In

addition, since S is measurable, there exists η1 > 0 such that

 




2
)()(

1




n

k
kk SaTa

holds for any division δ = {D1, ..., Dn} for which ||δ|| < η1. Consequently,
for such divisions we have

| SV ,
 ( δ, S )  nV


, ( δ, S ) | 






n

k
kkk SaTaMnV

1 2
|)()(||))((|


. (*)

On the other hand, since V


· n


is integrable on S, there exists η2 > 0 such
that for ||δ|| < η2, we have

| SnV ),(

 ( δ, S )  I | <

2


. (**)

   Combining (*) and (**) , for || δ|| < η = min{ η1, η2}, we obtain
| SV ,

 ( δ, S )  I | < ε,

with accomplishes the proof. }

3.8. Corollary. The surface integral of the second type does not depend on
parameterization (as long as we present the orientation).
Proof. According to corollary 4 in § VIII.2, the surface integral of first type
is independent of parameterization. Restricting to positive diffeomorphisms
of the orientated surface S, n


is also an invariant of the surface, hence the

integrals in 3.7(ii) from above do not depend on parameterization. }

3.9. Proposition. The surface integral of the second order has the
properties:

(i)    

S S S

dSnWdSnVdSnWV


)( (linearity)

(ii) 




21 SS

dSnV


=  

1S

dSnV


+  

2S

dSnV


(additivity), whenever S1 and

S2 have at most frontier common points

(iii) 




S

dSnV


=   

S

dSnV


(orientation) where S is the contrary

orientated surface (of normal n


).
Proof. (i) and (ii) are consequences of proposition 7, §2. Property (iii)

simply follows from V


(n


) = V


· n


, and (i) . }
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3.10. Remark. Using parameterizations, we may reduce formula (ii) from
theorem 3.7 to several double integrals as follows:

 

S

dSnV


=  

D

vu

D

dudvrrVdudvCVBVAV )()( 321


=

=  

)(Pr

321 )(

Sxy

dxdyVqVpV .

Obviously, these formulas correspond to different forms of the expression
of the normal n


, and that of the elementary area dS.

3.11. Example. Let us evaluate the integral

I =  

S

dxdyyxyzdzdxxzdydz )( 22 ,

where S denotes the upwards orientated surface of equation 22 yxz  ,

restricted to the condition 1z .
We may start by writing the normal vector, for example in the form

)22(
441

1

22
kjyix

yx
n





 .

Consequently, we may reduce the problem to a surface integral of the
first type, i.e.

I =  dSyxzyzx
yxS

)(22
441

1 2222

22



 .

Further on, this integral reduces to a double one by replacing dS, e.g.

I =  

D

dxdyyxyx ))(221( 2222 ,

where }1:),{( 22  yxyxD . Using polar coordinates, we easily obtain

the result I =
6


 .
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PROBLEMS § VIII.3

1. Evaluate I =  

S

xydxdyxzdzdxyzdydz , when S is the external side of

the tetrahedron bounded by the planes of equations x = 0, y = 0, z = 0,
and x + y + z = a > 0.

Hint. The integral on the side x = 0 reduces to dyzdzy
a ya

 












 

0 0

, etc. For the

side Sa of equation x + y + z = a we have )(
3

1
kjin


 , hence the

integral can be expressed as an integral of the first type

 

aS

dSxyxzyz )(
3

1
.

2. Find the flux of the vector function V


(x2, y2, z2) through the sphere
(x a )2 + (y b)2 + (z c)2 = R2.

Hint. Φ =  

S

dxdyVdzdxVdydzV 321 . In particular,

R
n

1



(x a, y b, z c),

hence Φ reduces to a surface integral of the first type

Φ = dSczzbyyaxx
R

S
  )]()()([

1 222 .

Using spherical coordinates is advisable, since dS = R2sinθ dθdφ, and

Φ = )(
3

8 3 cbaR  .

3. Evaluate I = 
S

zdxdy , where S is the external side of the ellipsoid

1
2

2

2

2

2

2


c

z

b

y

a

x
, and interpret the result.

Hint. Using the parametric equations of the ellipsoid
x = a sin θ co sφ, y = b sin θ sin φ, z = c cos θ, 

we obtain
n


= (b c sin2 θ co sφ, a csin2 θ sin φ, a b sin θ cos θ),
hence
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I = 
D

c cos θ absin θ cos θdφd θ = 2πabc 


0

cos2 θsin θd θ =
3

4
abc.

4. Evaluate I =  

S
z

dxdy

y

dzdx

x

dydz
, where S is the exterior side of the

ellipsoid 1
2

2

2

2

2

2


c

z

b

y

a

x
.

Hint. I is apparently improper since x, y, z can be zero on S, but if we
introduce the parametric equation of the ellipsoid (as above), it becomes a

definite double integral; I = 4π 









c

ab

b

ac

a

bc
.

5. Let S be a closed regular surface, which bounds a measurable domain
, such that each parallel to ox, oy, oz axis meets S at most two times.
Show that the volume of  is given by

v( ) =  

S

zdxdyydzdxxdydz
3

1
.

Hint. v( ) = 
S

zdxdy , since S = S1 S2, where

S1 = {(x, y, z) : z = f1(x, y), (x, y)  D}
S2 = {(x, y, z) : z = f2(x, y), (x, y)  D},

and D = Prxy(S).
Supposing f1 > f2, and taking into consideration the orientation,


S

zdxdy =  

D D

dxdyfdxdyf 21 .

Similarly, we treat the other projections (see also problem 3).
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§ VIII.4. INTEGRAL FORMULAS

Our purpose in this section is to establish relations between line, surface,
and multiple integrals in R3. A similar relation between line and double

integral in R2 we already have discussed in theorem 21, §2, chapter VII,

where we have proved the Green integral formula.

 



















 dxdy

y

P

x

Q
QdyPdx

D

.

A characteristic of these formulas consists in some specific restrictions on
the considered domain and its frontier, which will be included in the
following definition:
4.1. Definition. We say that the domain D  R3 is regular iff it satisfies

the conditions:
(i) D is a measurable compact domain (m.c.d.)

(ii) D is a finite union of simple sub-domains relative to all axes (i.e. any

line parallel to ox, oy or oz meets the frontier S of D at most two times),
without common interior points.
(iii) S = Fr(D ) is a regular, closed and orientated surface.

For regular domains the triple integral may be expressed by a surface
integral of the second type as follows:
4.2. Theorem. (Gauss-Ostrogradski formula) If D  R3 is a regular

domain of frontier S, and V

 CR

1(D ) is a vector function of components

V1, V2, V3, then

  






















D S

dxdyVdzdxVdydzVdxdydz
z

V

y

V

x

V
321

321 .

Proof. If D = D 1 ...  D n, as above, it is sufficient to prove the

formula for D k, k = 1, ..., n. More exactly, we can show only that

 




k kFr

dxdyVdxdydz
z

V

D D )(

3
3 ,

because adding the similar formulas for V1 and V2 on all Dk, k = 1, ..., n,
we obtain the claimed formula.

In fact, since D k is simple relative to oz axes, there exist

fk, gk : Prxy(D k)  R such that

D k = {(x, y, z)  R 3 : fk(x, y)  z  gk(x, y), (x, y)  Prxy(D k)}.

By iterating the triple integral on D k we obtain
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k kxy

k

k

dxdydz
z

V
dxdydz

z

V
yxg

yxfD D )(Pr

),(

),(

33

=  

)(Pr

33 ))],(,,()),(,,([

kxy

dxdyyxfyxVyxgyxV kk

D

=  




2, 2,

33

k kS S

dxdyVdxdyV ,

where
Sk,1 = {(x, y, z)  R 3 : z = fk(x, y), (x, y)  Prxy(D k}

and
Sk,2 = {(x, y, z)  R 3 : z = gk(x, y), (x, y)  Prxy(D k)}.

The sign "" at Sk


,2 shows that the positive sense of the normal is
opposite to the usual one (in accordance with the sense of the oz axes).
Using the orientation of the surface integral of the second type relative to
the normal, we may remark that Sk = Sk,1 Sk,2 is the frontier surface of Dk,
hence we have

 




k kS

dxdyVdxdydz
z

V

D

.3
3

Similarly we treat the other integrals. }

4.3. Remark. (i) Expressing the surface integral in Gauss-Ostrogradski
formula by a surface integral of the first type we obtain

 






















S

dSnVdxdydz
z

V

y

V

x

V 

D

321 ,

where the last integral represents the flux of V


through S. The triple

integral can also be simplified if we define the divergence of V


as

div V


=
z

V

y

V

x

V













 321 .

In this case the Gauss-Ostrogradski formula takes the form

  

D S

dSnVdxdydzVdiv


,

also called the flux-divergence formula. It is very useful in field theory by
its remarkable consequences (see the next chapter).
(ii) The other important integral formula relates line and surface integrals
involving the notion of rotation. Therefore we recall (see definition 11, §3,

chapter VI) that the rotation of V


= (V1, V2, V3) 
1

3RC (D ) is defined by

rot V


= 




















































k

y

V

x

V
j

x

V

z

V
i

z

V

y

V 
123123
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=

321 VVV

zyx

kji















.

There are also necessary some regularity conditions for the surface.
4.4. Definition. We say that surface S is explicit relative to z iff there exists

an open set O  R2, a function f  2
RC (O), and a m.c.d. D  O such that

S = {(x, y, z) R3 : z = f (x, y), (x, y) D}.

Similarly, we define the explicit surface relative to x or y. If S is explicit
relative to x, y, or z, then we simply say that S is explicit. Surface S is called
elementary iff it consists of a finite number of regular and explicit surfaces.
4.5. Remark. Each explicit surface is orientated according to the
convention in § VIII.3. In fact, if S is a regular surface explicit relative to z,
then the curve γ = FrD has a natural positive sense, namely the counter-
clockwise one, which induces the positive sense on

Γ = {(x, y, z)  R3: z = f(x, y), (x, y)  γ }.

Usually, Γ is called the orientated border of S. This orientation is
compatible with that of S in the sense of the right-hand screw rule.

When the elementary surface S is decomposed in regular and explicit
sub-surfaces, by convenience we consider that these sub-surfaces have only
border points in common. More exactly, each part of the border of a
sub-surface can belong to at most two sub-surfaces, case in which it is
traced in both opposite senses. The union of all parts of the borders which
belong to a single sub-surface form the border of S, denoted Γ = Bd(S).

4.6. Theorem. (Stokes formula) Let V

 1

3RC (D ) be a vector function of

components V1, V2, V3 on the domain D  R3. If S  D is an elementary

surface of border Γ, then

 
 S

dSnVrotrdV


)( .

Proof. It is sufficient to prove the formula for a single sub-surface of S
which is regular and explicit relative to z (for example), because finally we
can add such relations to obtain the claimed one. In other terms, we will
prove the formula supposing that S reduces to a single regular surface,
which is explicit relative to z.

Let φ : [a, b]  R3 be a parameterization of Γ = Bd(S). If we explicit

φ(t) = (x(t), y(t), z(t)) for all t  [a, b], then

 
 dzVdyVdxVrdV 321


=

= dttztVtytVtxtV
b

a
  )]('))(()('))(()('))([( 321  .
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Because Γ = B d(S) is a part of S, we have z(t) = f(x(t), y(t)) on Γ, hence

z'(t) =
x

f




(x(t), y(t))x'(t) +

y

f




(x(t), y(t))y'(t) .

Consequently,

 













b

a

dttyt
y

f
VVtxt

x

f
VVrdV )(')]()[()(')]()[( 3231  



= 



 dxyx

x

f
yxfyxVyxfyxV



)],()),(,,()),(,,([ 31

+ dyyx
y

f
yxfyxVyxfyxV )],()),(,,()),(,,([ 32




 .

   Using the Green formula for γ and D in R2, we obtain

dxdy
x

f
VV

yy

f
VV

x
rdV

D
 





























 )()( 3132



The problem reduces to evaluating the square bracket under this double
integral. In fact, since f  CR

2(D), its mixed partial derivatives of the

second order are equal, hence




















)()( 3132

x

f
VV
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f
VV

x

= 
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V

x

V

x

f

z

V
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V
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V
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V
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V

y
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V

y

V

x

f 123123 =

= (rotV


) 1

22
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f

x

f
n


,

where 






























































kj
y

f
i

x

f

y

f

x

f
n


2/122

1 is the unit normal to

S (|| n


|| =1). Finally,

  





























D S

dSnVrotdxdy
y

f

x

f
nVrotrdV


)(1)(

22

,

which proves the Stokes formula. }
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4.7. Remarks. (i) The Green formula (which has been used in the proof) is
a particular form of the Stokes formula. In fact, if V3 = 0, and Γ = γ is a 
plane curve bordering the domain S = D  R2, then n


= (0,0,1), hence we

have (rot V


)n


=
y

V

x

V








 12 , while

 






dyVdxVrdV 21


.

(ii)The line integral 


rdV


is also called the curl or circulation of V


on

Γ. Using this term the Stokes formula says that: "the flux of the rotation of

V


through S is equal to the curl of V


along the border Γ of S" .
4.8. Corollary. Under the conditions of theorem 4.6, if S1 and S2 are

elementary surfaces having the same border Γ, then the fluxes of rot V


through S1 and S2 are equal.
Proof. According to the Stokes formula both fluxes are equal to the curl of

V


on Γ. Obviously, the orientation of S1 and S2 are supposed to be
compatible to the positive sense on Γ. }

4.9. Remark. Using Stokes formula we can improve theorem 12, §3,
chapter VI, in the sense that the condition for the domain to be stationary

can be removed from the hypothesis. In fact, if the field V


is conservative,

i.e. rot V


= 0, then the curl on any closed curve is null, hence the line
integral of the second type does not depend on the curve, but only on its
endpoints. In other terms, each irrotational field is non-circulatory (or
circulation free).

We mention that besides their theoretical importance (obviously in field
theory), the above formulas are frequently useful in order to evaluate
surface and line integrals.
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PROBLEMS §VIII.4

1. Evaluate I =  

S

dxdyxydzdxzxdydzyz , where S is the boundary of

a regular domain D  R3. Generalization.

Hint. V


(x, y, z) = (yz, zx, xy), hence div V


= 0, and I = 0 according to the
Gauss-Ostrogradski formula. More generally, we obtain a null integral if

V


(x, y, z) = (f(y, z), g(x, z), h(x, y)).

2. Evaluate I =  

S

dxdyzdzdxydydzx , where S is the external surface

of a sphere of radius r (and arbitrary center).

Hint. In the Gauss-Ostrogradski formula div V


= 3, and 
D

dxdydz is the

volume of the sphere.

3. Find I =  

S

dxdyzdxdzydydzx 222 if S is the external total surface

of the cone 0 hyxhz  22 , where h > 0 .

Hint. The Gauss-Ostrogradski formula reduces I to a triple integral; the

result is I =
2

2h
.

4. Show that if V


derives from a harmonic potential in the regular domain

D, then the flux  

S

dSnV 0


, where S = Fr (D ) .

Hint. By hypothesis, V


= 




















z

U

y

U

x

U
,, , hence div V


 = ΔU = 0 because

U is harmonic. Use the Gauss-Ostrogradski formula.

5. Prove that if S is a closed surface, which bounds a regular domain, and

l


is a fixed direction, then I =  

S

dSln 0),cos(


, where n


is the outer

normal to S.

Hint. Consider n


= (cos α, cos β, cos γ) and l


= (cos α0, cos β0, cos γ0),

such that I =  

S

dxdydzdxdydz 000 coscoscos  . On the other hand,

 lnln


,),cos( , as in the Gauss-Ostrogradski formula.
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6. Evaluate I = dzxdyzdxy 222 


, where Γ is the contour of the triangle

of vertices A(a, 0, 0), B(0, a, 0), C(0, 0, a).

Hint. V


= (y2, z2, x2) has rot V


= (2z, 2x, 2y), hence using Stokes

formula, I =  

S

dSzyx )(
3

2
, where S is the surface of the triangle

ABC. Since x + y + z = a on S, and 
S

dS  is the area of  Δ ABC, we obtain

I = a3.

7. Applying Stokes formula, find I = 


 dzyxdyxzdxzy )()()( ,

where Γ is the ellipse of equations x2 + y2 = 1, x + z = 1. Verify the result
by direct calculation.

Hint. V


=(y z, z x, x y) has rot V


= 2( kji


 ), and the plane of

the ellipse has n


=
2

1
(1, 0, 1). I = 4π. A parameterization of Γ is

x = cos t, y = sin t, z = 1 cos t, t  [0, 2 π].

8. Evaluate the line integral I = 


 dzzyxdyyxxdx )()( , where Γ

has the parameterization x = a cos t, y = a sin t, z = a(cos t + sin t),
t  [0, 2 π], using Stokes' formula, and directly.

Hint. rot V


= kji


 , and Γ is an ellipse on the plane z = x + y.

9. Find the curl of V


= kzj
yx

y
i

yx

x 
2

22
2222







along the circle of

equations x2 + y2 = 1, z = 1 traced once in the positive sense relative to
ozaxis.

Hint. rot V


= 0, hence apply the Stokes' formula.
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CHAPTER IX. ELEMENTS OF FIELD THEORY

In essence, all the important notations of the field theory were already
introduced and studied in the previous chapter for both scalar and vector
fields. Therefore this chapter will be a synthesis on the differential and
integral calculus, expressed in a more intuitive language, specific to
applications. For these practical purposes, in § IX.3, we will put forward
the most significant types of particular fields.

§ IX.1. DIFFERENTIAL OPERATORS

For the beginning, we have to clarify the notion of field, which so far was
reduced to a scalar function φ : D  R, when we were speaking about

scalar fields, or to a vector function V


: D  R3, in the case of a vector

field. Usually, D is a domain in R3, but a similar topic is valid when

D  R2. Some problems arise when operating with φ and V


, since the

values of φ are considered as belonging to the field of real numbers, over

which the vector space R3 is defined, and the space R3 of the values of V


is

identified with the initial vector space R3, which contains D. In other

terms, as long as R3 is a set of pints (x, y, z), or position vectors

r


= x i


+ y j


+ z k


,

the definition of V


(x, y, z) in the same space, as in Fig. IX.1.1, makes no
rigorous meaning in spite of its practical use (e.g. the work of a force, the
flux, etc.). This situation is clarified by considering the notion of "tangent"
space:

Fig. IX.1.1.

x

0
y

z

r

V
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1.1. Definition. Let A = (x0, y0, z0) be a fixed point in R3. For any other

B  R3, the pair (A, B) is called tangent vector at A to R3. The set of all

tangent vectors at A is called tangent space at A, and is denoted as TA.
The point A is called origin (or application point), and B is called vertex

of the tangent vector (A, B). The number ||B  A|| is the length, and B  A is
the vector part of (A, B). It is easy to organize TA as a linear space:
1.2. Proposition. TA endowed with the operations  and  defined by

(A, B)  (A, C) = (A, B + C A)
λ (A, B) = (A, A + λ(B  A))

is a linear space isometric to R3.

The proof is routine.
1.3. Remark. The tangent space reproduces the geometry of R3 at A since

we can define the scalar product of two tangent vectors using the scalar
product in R3 of their vector parts, i.e.

<(A, B), (A, C)> = (B  A)(C  A).
Using this notion we can introduce the notions of norm, distance, angle

orthogonality, etc., and we can see that the correspondence
TA  (A, B)  B  A  R3

is an isometric isomorphism.
The tangent vectors

i


A = (A, (1, 0, 0)  A), j


A = (A, (0, 1, 0)  A), and k


A = (A, (0, 0, 1) +A)

represent the canonical basis of TA. Using the components of the tangent
vectors we can also construct the vector product, the mixed product, etc.

Between tangent vectors of different origins we have the relation of
parallelism defined by

(A1 , B1) || (A2 , B2)  0, B1  A1 and B2  A2 are collinear.
Now we can formulate the correct notion of vector fields, which is also

applicable to general (non-flat) manifolds:

1.4. Definition. The set T = 
3RA

TA is called tangent bundle of R3. A

vector field in the domain D  R3 is a function V


: D  T for which

V


(A) = V


A  TA for all A  D.

If V


and W


are vector fields on D, their sum is defined by

(V


+ W


)(A) = V


A W


A

at any A  D. Similarly, if V


is a vector field on D and f : D  R is a

scalar field, their product is defined by

(f V


)(A) = f (A)  V


A

at any A  D.
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Similarly, we can define the scalar product, the vector product, etc., of
vector fields using, at each A  D, the corresponding operations in TA, i.e.
by "local" constructions.

In order to justify the previous use of the term "vector field" for functions

V


: D  R3, where D  R3, we mention that in the case of R3 (which is a

linear, "flat" manifold) we have:
1.5. Proposition. If V is the space of all vector fields on D  R3 and F

is the set of all vector functions on D, then V and F are isometrically
isomorphic.

Proof. Each vector function F


: D  R3 is defined by three components,

i.e. F


= (f1, f2, f3), which are scalar functions on D. It is easy to see that
each vector field is also defined by three components, i.e.

V


= V1 I


+ V2 J


+ V3 K


,

where V1, V2, V3 : D  R. In fact, if I


, J


, K


represent the fundamental

fields, defined at any A  D by

I


(A) = Ai


= (A, (1, 0, 0) + A)

J


(A) = Aj


= (A, (0, 1, 0) + A)

K


(A) = Ak


= (A, (0, 0, 1) + A)

then V1 = <V


, I


>, V2 = <V


, J


>, V3 = <V


, K


>.
The claimed isomorphism is obtained by identifying the corresponding

components V1, V2, V3 and f1, f2, f3 . }

1.6. Remarks. (i) The study of the scalar and vector fields is realized by
three differential operators: gradient, divergence and rotation, which can be
unitarily treated using the following Hamilton's "nabla" (or "del") operator
(The Greek νάβλα is the name of an ancient musical instrument of
triangular shape):

 =
x


I


+
y


J


+
z


K


.

The constant fields I


, J


, K


are mentioned here in order to emphasize
the local character of nabla, but according to the above proposition we can
simply note

 =
x


i


+
y


j


+
z


k


.

(ii) For practical uses the symbol  can take two meanings, namely that of
a vector, and that of an operator. As an operator, which contains the partial
derivatives, it manifests also two characteristics, namely:
- linear operator relative to the algebraic operations;
- differential operator acting on the components of the field.
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These properties of  determine the rules of operating with it and also
the significance of its action.
(iii) If U : D  R is a scalar field, then

U =
x

U




i


+
y

U




j


+
z

U




k


= grad U.

If V


: D  T is a vector field of components V1, V2, V3, then

 ·V


=
x

V



 1 +
y

V



 2 +
z

V



 3 = div V


, and

x V


= (
y

V



 3 
z

V



 2 ) i


+ (
z

V



 1 
x

V



 3 ) j


+ (
x

V



 2 
y

V



 1 ) k


= rot V


.

We mention that  occurs in the notion of derivative of a scalar field U

along the unit vector l


, i.e.
l




= l


· , in the sense that

( l


· )U = l


·(U) = l


·grad U =
l

U




.

The derivative of a vector field V


in direction l


, which is defined by

l

V







( x


) =
t

xVltxV

t

)()(
lim

0





,

may be similarly expressed as:

( l


· )V


= 






















z
l

y
l

x
l zyx V


=

l

V



 1 i


+
l

V



 2 j


+
l

V



 3 k


.

In such formulas l


· acts as a scalar differential operator.
The Laplace second order differential operator on scalar fields

ΔU =
2

2

x

U




+

2

2

y

U




+

2

2

z

U





is frequently considered as Δ =  2, in the sense that
ΔU = ( · )U =  ·(U) = div (grad U).

The vectorial behavior of  is visible in the following:

1.7. Proposition. For any scalar field U and vector field V


we have:
(i)  x (U) = 0R

3 ;

(ii)  · (x V


) = 0;

(iii) x (x V


) = ( ·V


)  ( · )V


.
Proof. (i) The vector product of collinear vectors is null; in this case it

means that rot (grad U) = 0


.
(ii) The mixed product, in which two of the vectors are collinear, is null. In

other words div (rot V


) = 0.
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(iii) a


x (b


x c


) = (a


·c


)b

 (a


·b


)c


is generally valid for the double

vector product of three vectors, hence also for a


= b


=  and c


= V


. In
particular, this formula shows that

rot (rot V


) = grad (div V


)  ΔV


,

where ΔV


 = ΔV1 i


+ ΔV2 j


+ ΔV3 k =
2

2

x

V






+
2

2

y

V






+
2

2

z

V






.

We remember that the starting formula follows from

a


x (b


x c


)  =  λb


+ μc


.

We multiply by a


  to obtain  λ(a


· b


) + μ(a


· c


) = 0, hence

λ = k(a


· c


) and μ = k( a


· b


). If we take || a


|| = ||b


|| = ||c


|| = 1, and

a


=b

 c


, then we obtain k=1.
The linear character of  is essential in properties as:

1.8. Proposition. Let T, U be scalar fields on D  R3, V


, W


be vector

fields on D , and λ  R. Then the following formulas hold:

(i)  (U + T) = U + T;  (λU) = λU

(ii)  · (V


+W


) =  ·V


+ ·W


;  · (λV


) = λ ·V


(iii)  x (V


+W


) =  x V


+  x W


;  x (λV


) = λ x V


.
Proof. These formulas express the linearity of grad , div and rot. }

The property of  of being a differential operator is especially visible
whenever it acts on a product.

1.9. Proposition. If U, T are scalar fields, and V


, W


are vector fields, then:
(i) U = 0 if and only if U = constant

(ii)  · V


= 0 if V


is constant

(iii)  x V


= 0 if V


is constant
(iv)  (UT) = T U + UT

(v)  · (U V


) = V


·(U ) + U( · V


)

(vi)  x (U V


) = U(x V


)  V


x (U )

(vii)  · (V


x W


) = W


· (x V


)  V


(x W


)
Proof. (i) (v) are obvious. The sign "" in (vi) is due to the order

dependence in V


x (U) = (U) x V


. Formula (vii) follows by
developing the symbolic mixed product

321

321

zy

WWW

VVV

x 











=

321

321

VVV

zyx

WWW














321

321

WWW

zyx

VVV













(even though such a formula is not valid for vectors). }
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When we handle with  as a differential operator it is advisable to
respect the following:
1.10. Rule. (Step 1.)  applied to a product gives two terms, in which it
acts on a single factor. We usually mark this action by an arrow "↓", as for 
example in the above (iv):

 (UT) =  (

U T) +  (U


T ).

(Step 2.) Realize the action of  , as indicated by arrows, e.g.

 (

U T) +  (U


T ) = (


U )T + U(


T ).

(Step 3.) Let after  a single letter, which distinguishes the field on which
it acts, such that the arrows are not necessary anymore. For example:

(

U )T = T(U).

Other important formulas involving  are formulated in the problems at
the end of this paragraph. Here we mention only the  form of the main
integral formulas (established in §4, chapter VIII).
1.11. Corollary. Under the conditions stated in theorem 2, § VIII.4, the
Gauss-Ostrogradski formula takes the form

  

D S

dSnVdxdydzV )()(


1.12. Corollary. If the hypothesis of theorem 6, § VIII.4, is satisfied, then
the Stokes formula holds in the form

  

S

rdVdSnV


)( x .

These formulas are useful just for better understanding of the divergence
and rotation of a vector field:
1.13. Remark. In the case of a scalar field we have two possibilities of
defining the gradient of U at A  D, namely

grad U =
x

U




(A) i


+

y

U




(A) j


+

z

U




(A) k


,

as in definition 13, § IV.2, and according to corollary 4, § IV.3,

grad U = n
n

U 
 











,

where n


is the unit normal at the level surface passing through A.
Obviously, the first definition is preferable in calculations, but it seems to

depend on system coordinates. Only the second definition shows that the
gradient of a scalar field is an intrinsic characteristic of the field.

Similarly, for vector fields, so far we have used only the coordinate
dependent expressions of div and rot, so there is a problem whether they
depend or not on the system coordinates. The answer is that they don't and
this property follows from:
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1.14. Theorem. Let D, S and V


: D  R3 be as in Gauss-Ostrogradski 's

theorem. Let us fix A  D, and consider a sequence of sub-domains

(Dm) m N of D, containing A, and satisfying, together with their frontiers

Sm, the same conditions as D and S. If vm = μ (Dm) is the volume of Dm,

and dm = diameter(Dm) = sup{||x  y|| : x, y Dm} tend to zero when
m   , then

(div V


)(A) = .
1

lim dSnV
v

mSmm






Proof. The Gauss-Ostrogradski formula is valid for each Dm, i.e.

  

m mD S

dSnVdxdydzV )()(


.

Applying the mean value theorem to the triple integral, we can find some
points Am  Dm, such that

(div V


)(Am)  vm =  

mS

dSnV )(


.

There remains to use the continuity of div V


, which gives

(div V


)(A) =
m

lim (div V


)(Am),

and realize the same limit in the Gauss-Ostrogradski formula. }

1.15. Theorem. Let V

 C1

R
3(D) be a vector function and let us fix a

point A  D and a unit vector n

 TA. In the plane of normal n


, passing

through A, we consider a sequence (Sm)mN of elementary surfaces of

borders  m. If am = μ(Sm) are the areas of Sm, and dm = diameter(Sm)  0

when m   , then the component of the rotation of V


at A in the direction
of n


is

(rot V


)(A)  n


= 





m

rdV
amm

1
lim .

Proof. According to Stokes' formula for Sm and  m, m  N, we have






m

rdVdSnVrot

S


)( ,

and using the mean theorem fo the above double integral, we obtain

am [(rot V


)(Am)  n


] = 




m

rdV


,

where Am Sm. Since V


is of class C1, rot V


is continuous, hence

(rot V


)(A)  n


=
m

lim (rot V


)(Am)  n


.

Finally, we take the same limit in the Stokes formula. }
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1.16. Corollary. (div V


)(A) and (rot V


)(A) are independent of the system
coordinates (i.e. they are intrinsic elements of the field at A).
Proof. The elements which appear in the right side of the relations
established in the above theorems 14 and 15, as well as the volumes, areas,
line integrals and surface integrals, are all independent of the system
coordinates. }

In particular, we obtain the components of rot V


on the canonical basis, if

we consider that are obtained; n


is successively equal to i


, j


and k


, i.e.

(rot V


)(A)  i


= 

















z

V

y

V 23 (A), etc.
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PROBLEMS § IX.1

1. Using rule 1.10, prove the formulas:

(i) rot (U V


) = U rot V

 V


x grad U

(ii) div(V


x W


) = W


rot V

 V


rot W


(iii) rot (V


x W


) =
V

W

W

V
















+ V


div W

 W


div V



(iv) grad (V


W


) = V


x rot W


+ W


x rot V


+
W

V

V

W

















(v)
l

VU






 )(
= V


( l


grad U) + U
l

V








Hint. (i)  x (U V


) =  x (

U V


) +  x (U



V


) = (

U )x V


+ U (x V


)=

= U (x V


)  V


x (U).

(ii)  (V


x W


) =  (


V


x W


) +  (V


x


W


) = W


(x V


)  V


(x W


),
where the last equality expresses the rule of interchanging the factors in a
mixed product (compare with (vi) and (vii) in proposition 1.9).

(iv)  x (V


x W


) =  x (


V


x W


) +  x (V


x


W


) , where use

a


x (b


x c


) = ( a


c


)b

 ( a


b


)c


,
we obtain

 x (


V


x W


) = (W


)


V

 (



V


)W


=
W

V







 W


div V


, etc.

(iv) The relation  (V


W


) =  (


V


W


) +  (V
 

W


) is not to be continued

by W


div V


+ V


div W


, since the scalar product would be neglected. Using

again the identity a


x (b


x c


) = ( a


c


)b

 ( a


b


)c


, in the sense that

V


x (x


W


) = = (V
 

W


)  (V

 )



W


,
we obtain

 (V
 

W


) = V


x (rot W


) +
V

W







.

(v) ( l

 )(U V


) = ( l


 )(


U V


) + ( l


 )(U



V


) = V


l

U




+ U

l

V







.

2. Let a

 R3 be a fixed unit vector (|| a


|| = 1), and r


= x i


+ y j


+ zk


.

Show that:
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(i)
a

r







= a


(ii) a


[ grad (V


a


)  rot (V


x a


)] = div V


(write it also for V


= r


)
(iii) div [|| r


|| ( a


x r


)] = 0.

Hint. (ii) Express rot (V


x a


) according to problem 1 (iii), and multiply by
a


. (iii) Combine proposition 1.9, (v) and problem 1 (ii).

3. Show that if D  R3 is a regular domain, and u, v 2C R(D), then the

following Green's formula holds:

,)(  


















D S

dS
n

u
v

n

v
uduvvu 

where n


is the unit normal to S at its current point.

Hint. Write the Gauss-Ostrogradski formula for V


= u grad v and

W


= v grad u, and subtract the forthcoming relations. We start with

div (u grad v) = grad u · grad v + u · Δv, then we introduce .
n






4. Let D  R3 be a regular domain of frontier S, and V


2C R
3 (D). Show

that

 

SD

dSVndVrot


x ,

where n


is the unit normal at the current point of S, and the integrals of the
vector functions are understood on components.

Hint. Apply the Gauss-Ostrogradski formula to V


x W


, where W is an

arbitrary constant field. Since  x W


= 0,  (V


x W


) = W


·( x V


), it
follows that

   

D S SD

dSVnWdSnWVdxdydzVrotWdWVdiv )()()()(


xxx .

Consequently for arbitrary W


we have

W


·  

D S

dSVnWdVrot


x .

5. Evaluate the flux of the field V


= a


x r


+ ( a


· r


) a


through a closed
surface S, where r


is the position vector of the current point, and a


is a

constant unit vector.

Hint. Verify that div V


= 1, and apply the Gauss - Ostrogradski formula.
The flux is equal to the volume bounded by S .
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6. Show that for any ,  2C R(D), the field V


=  grad  + grad  is

orthogonal to rot V


.

Hint. Establish that rot V


= grad  x grad  using problem 1, (i) .

7. Let a


= (ax , ay , az ) and b


= (bx , by , bz ) be constant vectors. We

note  = a


grad r3, and  = b


grad r 3, where r


is the position vector of
the current point. Show that:

(i) b


grad  + r 6 a


grad  =
r

18
( a


· r


) (b


· r


)

(ii) b


grad div ( r


) + a


grad div (r 6  r


) = 0

(iii) div ( + ) r

 3( + ) = 6r ( a


· r


) + 12r 5(b


· r


).
Hint. (i) Establish the explicit expressions

 = 3 r (x ax + y ay + z az ) = 3  arr

 ,

 = – 3 r – 5 (x bx + y by + z bz ) =  br
r




5

3
,

then evaluate

b


grad  =     barbrar
r


 3

3
, and

a


grad  =     brar
r

ba
r




75

153
.

(ii) From div ( r


) =  rar

9 it follows that

b


grad [div ( r


)] =     barbrar
r


 9

9
.

Similarly, since div (r 6  r


) =  rbr

9 , we have

a


grad div (r 6  r


) =     





 barbrar

r

1
9 .

(iii) Start with  +  = 3  arr

  br

r




5

3
, and deduce

div [( + ) r


] = 3 ( +  ) +  rar

6 +  br

r




5

12
.
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§ IX.2. CURVILINEAR COORDINATES

Even though the differential operators define intrinsic elements of the
fields, in practice it is sometimes important to express these operators in
other than Cartesian coordinates, eg. spherical or cylindrical.
2.1. Definition. Let E  R3 be a domain, and T : E  R3 be a vector

function. We say that T is a coordinates change (transformation) iff it is a
1:1 diffeomorphism between E and D = T (E), such that Det JT > 0 at

any (u, v, w)  E. The surface

0uS = {(u, v, w)  R3 : u = u0}

is called coordinate surface of type uconstant; similarly are defined the
coordinate surfaces v constant, and wconstant. The curve

γu =
0vS 

0wS

is called coordinate curve of parameter u; similarly are defined the
coordinate curves of parameters v and w .

The unit normal vectors to the surfaces
0uS ,

0vS and
0wS will be denoted

1n


, 2n


respectively 3n


. The unit tangent vectors to the curves γu, γv, γw are

denoted by 1l


, 2l


, 3l


.

2.2. Remarks. The coordinates u, v, w are usually called curvilinear
because the coordinate curves are not straight lines as in the case of the
Cartesian coordinates. The change of coordinates can also be expressed by
the correspondence between curvilinear and Cartesian coordinates

E  (u, v, w) 
T

(x, y, z)  D,
which is explicitly written using the components f, g, h of T, i.e.















).,,(

),,(

),,(

wvuhz

wvugy

wvufx

These formulas furnish the Cartesian equations of the coordinates
surfaces and coordinates curves.
2.3. Examples. (i) The spherical coordinates (ρ, φ, θ) are introduced by















cos

sinsin

cossin

z

y

x

hence
0

S is a sphere,
0

S is a cone and
0

S is a half-plane.

   Consequently γρ is a half-line, γθ is a half-circle, and γφ is a circle (see
Fig. IX.2.1, a)).
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The vectors 1n


, 2n


and 3n


are orthogonal to each other, and kn


= kl


for all k = 1, 2, 3.

Fig. IX.2.1

(ii) The cylindrical coordinates (r, t, z) are defined by















,

sin

cos

zz

try

trx

hence
0r

S is a cylinder,
0t

S is a half-plane and
0zS is a plane, respectively

γr is a half-line, γt is a circle and γz is a straight line (Fig. IX.2.1, b)).

Similarly, { 1n


, 2n


, 3n


} is a system of orthogonal vectors, and kn


= kl


for all k = 1, 2, 3.

(iii) Generally speaking { 1n


, 2n


, 3n


} and { 1l


, 2l


, 3l


} are not orthogonal

systems of vectors, and kn


 kl


, for some k = 1, 2, 3. For example we can

consider the coordinates (u, v, w) defined by















w.z

vshuchy

vchushx

However, there are strong relations between these vectors:

2.4. Proposition. (i) Noting k
u

h
j

u

g
i

u

f
ru
















 , etc; we have ur


|| 1l


,

vr


|| 2l


and wr


|| 3l


.

(ii) If, reversing T, we note

r
0

M

M

x

y

z

x

y

z

0

i

z





t

z

r







0
S

0
S

0
S

0zS

0r
S

0t
S

a) b)
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),,(

),,(

),,(

zyxw

zyxv

zyxu

then 1n


|| grad φ, 2n


|| grad ψ, and 3n


|| grad χ .

(iii) {grad φ, grad ψ, grad χ } and { ur


, vr


, wr


} are reciprocal systems of

vectors, i.e. grad φ  ur


= 1, grad φ  vr


= 0, grad φ  wr


= 0, etc.

Proof. (i) and (ii) are direct consequences of the definitions of a gradient
and of a tangent to a curve. The relations (iii) express the fact that
T1   T = ι, hence their Jacobian matrices verify JT

1 · JT = I, where I is the

unit matrix. Since T is non-degenerate, { 1n


, 2n


, 3n


} and { 1l


, 2l


, 3l


} are

linearly independent. }

2.5. Definition. If T is a change of parameters, then the numbers
|| ur


|| = L1, || vr


|| = L2 and || wr


|| = L3

are called Lamé parameters and
|| grad φ || = H1, || grad ψ || = H2 and || grad χ || = H3

are called differential coefficients of the first order.
Using the previous proposition we deduce:

2.6. Proposition. (i) ur


= L1 1l


, vr


= L2 2l


, wr


= L3 3l


;

(ii) grad φ = H1 1n


, grad ψ = H2 2n


, grad χ  = H3 3n


;

(iii) LkHk = 1 for all k = 1, 2, 3, whenever the system of coordinates u, v, w

is orthogonal (i.e. { 1l


, 2l


, 3l


} is an orthogonal basis in R3).

Proof. (i) and (ii) is based on the fact that || kl


|| = || kn


|| = 1 for all k = 1, 2, 3.

Relations (iii) are consequences of grad φ  ur


= 1, etc. }

2.7. Examples. (i)  In  spherical  coordinates  (ρ, φ, θ)  we  have  

L1 = H1 = = || r


|| = 1, L2 =
2H

1
= || r


|| = ρ sin θ,  and  L3 = ||||

1

3
 r

H


= ρ.

(ii) In cylindrical coordinates (r, t, z) we have

L1 = H1 = || rr


|| = 1, L2 =
2

1

H
= || tr


|| = r, and L3 = H3 = || zr


|| = 1.

(iii) For (u, v, w) in the above example 3, (iii), we have

L1 = || ur


|| = = 2uch , L2 = || vr


|| = 2vch , and || wr


|| = 1 = L3 = H3,

but

H1 = ||grad φ|| = =
v)-ch(u

2vch
and H2 = ||grad ψ || = 

v)-ch(u

2uch
.

Consequently,
L1H1  1  L2H2 even though grad φ · ur


= 1 and grad ψ · vr


= 1.
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We mention that grad φ and grad ψ  are easily obtained without making 

φ and ψ explicit, but calculating 
yxyx 














,,, from systems of the form






























.chsh0

shch1

x
v

x
u

x
v

x
u

We obtained them by deriving the initial relations relative to x and y.
From now on, we will consider only orthogonal coordinates.
In order for us to use the Lamé parameters in writing the differential

operators of a field, we need the expressions of the length, area and volume
in orthogonal curvilinear coordinates.
2.8. Lemma. Let (u, v, w) be an orthogonal system of coordinates, and let
L1, L2, L3 be the corresponding Lamé parameters.
(i) If γ is  a  curve  of  parameterization  u = u(t), v = v(t), w = w(t),
where
t  [a, b], then the length of γ is 

 


 dtwLvLuLrd
b

a

2
3

2
2

2
1 )'()'()'(||||


;

(ii) If D is a measurable domain in the surface
0wS , then the area of D is

 

D E

dudvLLdS 21 ,

where T(E) = D;
(iii) If D is a measurable domain in R3, and D = T (E), then the volume of

D is

 

D E

dudvdwLLLd 321 .

Proof. (i) We have

d r


= ur


du + vr


dv + wr


dw = [(L1u') 1l


+ (L2v') 2l


+ +(L3w') 3l


]dt,

and because { 1l


, 2l


, 3l


} is an orthogonal basis, it follows the corresponding

formula of ||d r


||.
(ii) Changing the variables (x, y, z)  (u, v, w) in the surface integral on D,
we replace dS = || ur


x vr


||du dv, but since ur


 vr


, we have

|| ur


x vr


|| = L1L2.

(iii) Changing the variables (x, y, z)  (u, v, w) in the triple integral on D,

we replace dΩ = Det JT du dv dw, where Det JT = ur


( vr


x wr


). }

The expressions of the differential operators in (orthogonal) curvilinear
coordinates will be obtained starting out with their invariant definitions:
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2.9. Theorem. Let U : D  R be a scalar field, T : E D be a change

of coordinates and let U
~

= U  T be the same field in the coordinates
(u, v, w) of E. If L1, L2, L3 are the Lamé parameters, then

grad U
~

= 3
3

2
2

1
1

~
1

~
1

~
1

l
w

U

L
l

v

U

L
l

u

U

L
















.

Proof. According to the invariant definition of a gradient, the derivative

into any direction l


is the projection of the gradient on this direction,
hence in particular

kl

U




~

= (grad U
~

) kl


for all k = 1, 2, 3.

On the other hand , if M0 = (u0, v0, w0) is fixed in E, also by definition

s

wvuUwvuuU
M

l

U

s 










),,(
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),,(
~

lim)(
~

000000

0
0

1

 ,

where Δs = || ur


(M0)||Δu is the distance between M0 and (u0+Δu, v0, w0).

Consequently,

u

U

Ll

U









~

1
~

11



and similarly,

22

1
~

Ll

U







w

U

Ll

U

v

U













~

1
~

,
~

33

 .

From the components of grad U
~

, relative to the basis { 1l


, 2l


, 3l


}, we

immediately deduce the announced form of the vector grad U
~

. }

2.10. Theorem. Let D be a regular domain in R3, V


: D  T a vector

field, and let W


= V

T, where T : E D is a change of variables

which has the Lamé parameters L1, L2, L3. If
W1(u, v, w), W2(u, v, w), and W3(u, v, w)

are the components of W


in the local (orthogonal) basis { 1l


, 2l


, 3l


}, then

div W


= 




















w

WLL

v

LWL

u

LLW

LLL

)()()(1 321321321

321

.

Proof. Let us fix M = (u0, v0, w0) in E, and let us consider a curvilinear
paralleloid of boundary S and volume Ω (as in Fig. IX.2.2), having the
sides along the coordinate curves.

According to theorem 14, § IX.1, the invariant form of divergence is

div W


(M) =  


S

dSnW
1

lim
0

.
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Fig. IX.2.2

To evaluate the flux of W


through S we calculate it for pairs of faces, e.g.

Φ1 =   
ABCD MNPQ

dSnWdSnW


.

On the face MNPQ we have n


=  1l


, hence W


· n


= W1(u0, v, w), and

(approximately) the same on the face ABCD, i.e. W


· n


= W1(u0 + Δu, v, w).
On both faces dS = L2L3dvdw, so that

Φ1 =  
 



vv

v

ww

w

dvdwwvuLLWwvuuLLW
0

0

0

0

)],,)((),,)([( 03210321 .

Using the Lagrange's theorem for the increment of W1L2L3, and the
mean-value theorem for the above double integral, we obtain

Φ1 =  
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wvuM
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LLW
udvdwM
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0
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)'(
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1
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1
321 ,

where M'1 and M1
* are convenient points of the parallelepiped.

Similarly, there exist M2
* and M3

* in the parallelepiped, such that

wvuM
w
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LWL
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u
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dSnW
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3
321*

2
321*

1
321



On the other hand, Ω = L1L2L3 ΔuΔvΔw, hence it remains to use the
continuity of L1, L2, L3 and W1, W2, W3. }

2.11. Corollary. Under the conditions of the above theorems (2.9 and

2.10), the Laplace operator of a scalar field U
~

, in orthogonal curvilinear
coordinates (u, v, w) has the expression

A

M

B

CD

N

P

Q

e2

e1

e
w

v

u
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ΔU
~

= 
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Proof. The components of W


= grad U
~

are W1 =
u

U

L 


~

1

1

, W2 =
v

U

L 


~

1

2

and W3 =
w

U

L 


~

1

3

, hence

W1L2L3 =
u

U

L

LL




~

1

32 , L1W2L3 =
v

U

L

LL




~

2

31 and L1L2W3 =
w

U

L

LL




~

3

21 .

   Finally, ΔU
~

= div W


. }

2.12. Theorem. Using the above notations, under the conditions of Stokes'
theorem, in orthogonal coordinates (u, v, w), we have:

rot W


=

332211

332211

321

LL

1

WLWLWL

wvu

lllL

LLL 













.

Proof. Aiming to find the component into direction 1l


at M= (u0, v0, w0) E,

we consider the surface S in
0uS coordinate surface, bounded by the

curvilinear rectangle MNPQ = Γ (see Fig. IX.2.3).

Fig. IX.2.3.

According to theorem 15, § IX.1, this component of rot W


is

rot W


|
1l


= 



rdW

aa

1
lim

0
,

where a is the area of S = (Γ). In order to evaluate the curl on Γ, we
evaluate the line integral on each side of Γ, e.g.

M

C

N

PQ

e2

e1

e3w

v

u
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since on MN , we have d r


= L2 dv 2l


, etc. Consequently,
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Expressing the increments by the Lagrange formula, and using the mean
theorem for the above integrals it follows that:
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Taking into account that a = L2L3ΔvΔw, and that all the involved
functions are continuous, we obtain

rot W


|
1l


(M) = )(
)()(1 2233

32

M
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.

Similarly, we find the other components of rot W , hence we have

rot W


= 
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which formally can be written as the above determinant. }

The spherical and cylindrical coordinates are frequently most used.
2.13. Differential operators in spherical coordinates. If, in particular,
we take (u, v, w) = (ρ, φ, θ), then L1 = 1, L2 = ρ sin θ, L3 = ρ, and:

grad 321

~
1

~

sin

1
~

~
l
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div W


= 
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rotW


=
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2.14. Differential operators in cylindrical coordinates. If (u, v, w) = (r, t, z)
are cylindrical coordinates, then L1=1, L2 = r, L3 = 1, and

grad 321
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~
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The proof reduces to a direct substitution, and it is left as an exercise.
2.15. Remark. The formalism based on a symbol like  is not possible
anymore. In fact, the expression of grad u might suggest to consider

3
3

2
2

1
1

111~
l

wL
l

vL
l

uL
















 ,

but obviously div W


 
~

W


, and rot W


 
~

x W


, etc. Consequently, it
is advisable to use  only to express differential operators in Cartesian
coordinates.
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PROBLEMS § IX.2.

1. The generalized spherical and cylindrical coordinates are defined by















cos

sinsin

cossin

cz

by

ax

and














cz

tbry

tarx

sin

cos

where a, b, c  R*
+.

(i) Identify the coordinate surfaces and the coordinate curves

(ii) Find the vectors 1n


, 2n


and 3n


; and 321 ,, lll


, and check their

orthogonality
(iii) Evaluate L1, L2, L3, and H1, H2, H3.
Hint. Compare with examples 2.3, 2.7 (i) and (ii) of this section.

2. Consider the (non-orthogonal) system of coordinates (u, v, w) defined by
T : R3  R3, where (x, y, z) = T(u, v, w) means:















wz

vshuchy

vchushx

(i) If I is the straight line segment of end points (u0, v0, z0) = (1, 1, 1) and
(u1, v1, w1) = (2, 2, 1), find the length of γ = T(I) using the Lamé
parameters

(ii) If Q is the square of diagonal I, find the area of S = T(Q)
(iii) If K is the cube of base Q, find the volume of D = T(K) .

Hint. L1 = uch 2 , L2 = vch 2 , L3 = 1. We have x = y iff u = v, hence γ  
is the straight line segment of endpoints (e, e, 1) and (e2, e2, 1); a
parameterization of γ is x = et , y = et , z = 1, t  [1, 2]. Because the
coordinate curves are not orthogonal, we have to apply the formulas

 

I

rdrd


 = the length of γ ,

dudvrr
Q

vu ||||


x = the area of S, and


K

vvu dudvdwrrr )(


x = the volume of D

3. Let U : D  R be a scalar field, T : E  D be a change of

coordinates, and let T1 be expressed by
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zyxw

zyxv

zyxu

where (x, y, z)  D. Show that

grad 
~~~

~
grad

w

U
grad

v

U
grad

u

U
U














 ,

and use it in order to obtain the expression of grad U
~

in orthogonal
curvilinear coordinates.

Hint. grad φ = H1 1n


= 1
1

1
l

L


, etc.

4. Establish the formulas:

(i) rot kk
k

k lLgrad
L

l


x)(
1

 , k = 1, 2, 3

(ii) rot W


= 
 3,2,1

)(
k

kkk lWLgrad


x .

Hint. (i) Since grad φ = 1
1

1
l

L


, it follows that rot ( 1

1

1
l

L


) = 0. On the other

hand rot ( 1
1

1
l

L


) =  1l


+ grad

1

1

L
+

1

1

L
rot 1l


, where grad

1

1

L
= 

2
1

1

L
grad L1.

(ii) rot W


= 
 3,2,1

)(
k

kklWrot


, where

rot(W1 1l


) =  1l


x grad W1 + W1rot 1l


=

= [grad W1 + W1

1

1

L
(grad L1)] x 1l


=

1

1

L
grad (L1W1) x 1l


, etc.

5. Establish the formulas

div 1l


=
32

1

LL
(grad L2L3) 1l


, etc.

and use them in order to obtain div W


in orthogonal coordinates.

Hint. 1l


= 2l


x 3l


, hence div 1l


=  2l


rot 3l


+ 3l


rot 2l


, (see problem 1 (ii),

in § IX.1), where we can use the previous problem , and the properties of a
mixed product. Further,

div (W1 1l


) =
32

1

LL
(grad W1L2L3) 1l


=

321

1

LLL u

LLW






)( 321 , etc.
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6. Let us consider the system of coordinates (u, v, w), defined by

T :














wz

vuy

vux

sinsh

cosch

Show that it is orthogonal, determine the Lamé coefficients, and write the
Laplace equation in these coordinates.
Hint. ur


, vr


and wr


form an orthogonal system of vectors at each point.

L1 = L2 = vuch 22 cos , L3 = 1.
2

2

2

2 ~~

v

U

u

U









+ (ch2u  cos2v)

2

2 ~

w

U




=0.

7. Evaluate div W


and rot W


 if, in spherical coordinates (ρ, φ, θ), the field 

is defined by W


= 3ρ2θ 1l


+ ρ2
3l


.

Solution. div W


= 12ρθ + ρ ctg θ, rot W


= 0.

8. Find the potential from which derives W


 = 3ρ2θ 1l


+ ρ2
3l


in spherical

coordinates (W


is non-rotational according to the previous problem 7).

Hint. U
~

(ρ, φ, θ)  = 





),,(

),,( 000

rdW


, where

d r


= r


dρ + r


dφ + r


dθ = dρ 1l


 + ρ sin θdφ 2l


 + ρdθ 3l


,

hence W


d r


  = 3ρ2θdρ + ρ3dθ. Using a particular line, 

U
~

(ρ, φ, θ) =  










0 0

3
0

23 dd  = ρ3θ + c.

9. Find the potentials of the following fields in cylindrical coordinates:

a) V


= z 1l


+ r 3l


(rot V


= 0)

b) W


=
r

z
2l


+ t 3l


(rot W


= 0).

Hint. In cylindrical coordinates d r


= 1l


dr + r 2l


dt + 3l


dz. In particular,

V


d r


= d(rz), hence U
~

= rz + const. Similarly, W


d r


= d(tz) implies

U
~~

= tz + const .

10. In the local basis {l1, l2, l3} of the curvilinear coordinates (u, v, w)
defined by
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uvy

vux )(
2

1 22

we consider the field W


= u 1l


+ v 2l


+ w 3l


. Show that rot W


= 0, and find

the potential which generates W


.

Hint. L1 = L2 = 22 vu  , L3 = 1, hence

d r


= 22 vu  1l


du + 22 vu  2l


dv + 3l


dw.

The potential

U
~

(u, v, w) =  
),,(

),,(

2222

000

wvu

wvu

wdwdvvuvduvuu

can be obtained using the formula
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w

w

wvu

wvu

dttvuRdtwtuQdtwvtP

RdwQdvPdu

0 0 0

000

),,(),,(),,( 000

),,(

),,(

i.e. evaluating the circulation on a particular broken line up to a constant.

The result is U
~

(u, v, w) =
3

1
(u2 + v2)3/2 + w .
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§ IX.3. PARTICULAR FIELDS

So far we have been studying only the non-rotational fields as a
particular type of vector fields (see line integrals non-depending on the
curve, finding a function when the partial derivatives are known, etc). The
central result on non-rotational fields refers to the fact that they derive from
potentials and these potentials, can be expressed as line integrals of the
second type (circulations). The most representative example of a
non-rotational field is the Newtonian one

V


= k r
r


3

1
,

where k depends on the units, and r


is the position vector of the current

point (V


= grad U, where U = 
r

k
) . It is easy to see that div V


= 0 too, so

we are led to analyze similarly other types of fields.

3.1. Definition. The field V


: D T is said to be solenoidal iff

div V


= 0 holds at each point of D  R3.

Because of the practical meaning of div V


, expressed in terms of flux, the
solenoidal fields are also called fields without sources.

3.2. Proposition. V


: D  T is a solenoidal field if and only if the flux

of V


through any closed surface S is null (in the conditions of the Gauss-
Ostrogradski theorem).

Proof. If div V


= 0, then 0 


dVdivdSnV

S


for any domain Ω

with Fr Ω = S. Consequently, we can use the invariant definition of div V


,
specified in theorem 14, § IX.1). }

3.3. Theorem. The field V


: D  T is solenoidal if and only if for each

M0 = (x0, y0, z0)  D there exists a neighborhood N  D, of M0, and there

exists a vector field W


: N  T such that V


= rot W


on N.

Proof. If V


= rot W


then div V


= )( W


x = 0. Conversely, let us

choose M0 = (x0, y0, z0)  D for which N = S(M0, r)  D for some r > 0

(which exists because D is open). By hypothesis

div V


= 0321 














z

V

y

V

x

V

on D, which is valid on N too. The problem is to construct the field W


,

such that V


= rot W


on N. We show that there exists such a field in the

particular form W


= W1 i


+ W2 j


, i.e. the following relation is possible:
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V


=

021 WW

zyx

kji















.

In fact, the problem reduces to solving the system:
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V
y
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W

V
z

W

V
z

W

(*)

on N. The first equation gives

W2(x, y, z) =   
z

z

yxdtzyxV

0

),(),,(1 ,

where φ is an arbitrary real function of class C1 on N. Similarly, from the
second equation we deduce

W1(x, y, z) =  
z

z

yxdtzyxV

0

),(),,(2 .

Replacing W2 and W3 in the third equation we obtain
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dttyx
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),,(),(),(),,( 3
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or, using the hypothesis that div V


= 0,
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dttyx
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3 .

Applying the Leibniz-Newton formula to the above integral, it follows

),,(),(),( 03 zyxVyx
y

yx
x










.

   Obviously, there are functions φ and ψ satisfying this condition, hence W1

and W2 are completely (but not uniquely) determined. }

3.4. Remark. The construction of W


by solving (*) also represents the

practical method of solving problems in which W


is asked. Usually, the

method furnishes W


on the whole D, even though the proof is restricted to

some neighborhoods of the points at D. If the construction of W


must be
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realized repeatedly at different points, there arises the problem of
comparing the fields on the common parts of the corresponding
neighborhoods. This problem is solved by:

3.5. Proposition. A necessary and sufficient condition for the fields W


and

Z


to verify the relations rot W


= V


= rot Z


on the open and star-like
domain D is that

W

 Z


= grad U

for some scalar field U on D, and rot W


= V


.

Proof. If rot W


= V


= rot Z


, then rot (W

Z


) = 0, hence W

Z


derive
from a potential U.

Conversely, if V


= rot W


and Z


= W


+ grad U, then rot Z


= V


. }

By analogy to the case of the non-rotational fields, which are said to
"derive" from a scalar potential, a similar terminology can be used for
solenoidal fields in order to express theorem 3.3 from above.

3.6. Definition. The field W


, for which rot W


= V


, is called a vector

potential of V


. If so, we also say that V


derives form a vector potential W


.
Using these terms, the above results take the forms:

3.7. Corollary. (i) V


: D  T is a solenoidal field iff it locally derives
from a vector potential.
(ii) Two vector potentials of the same field, on a star-like and open domain
D , differ by a gradient.

(iii) If V


derives from the vector potential W


, and S is a surface of border
 as in Stokes' theorem, then

 




S

rdWdSnV


,

i.e. the flux of V


through S reduces to the circulation of W


along  .
Proof. All these assertions represent reformulations of some previously
established properties, namely theorem 3.3, proposition 3.5, and
respectively the Stokes' theorem. }

As generalization of the potential fields we consider now another type of
fields, which are generated by two scalar fields.

3.8. Definition. We say that the vector field V


: D  T is bi-scalar iff

there exist two scalar fields φ, ψ : D  R such that

V


= φ grad ψ.
The bi-scalar fields can be characterized in terms of rotation.

3.9. Theorem. V


: D  T is a bi-scalar field iff V


rot V


= 0.

Proof. If V


is a bi-scalar field, then V


rot V


= 0 since

rot V


= gradφ x grad ψ.

Conversely, if V


rot V


= 0, this is sufficient for the equation
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V1dx + V2dy +V3dz = 0 (**)

to have solution, where V1, V2 and V3 are the components of V


.
In fact, this equation is equivalent to the system
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zyxA
x

z

where A = 
3

1

V

V
and B = 

3

2

V

V
, which is integrable iff

A
z

B

x

B
B

z

A

y

A



















,

i.e. V


rot V


= 0. This conditions assures the possibility of integrating
successively the equations of the system, i.e. in z = f(x, y) + C(x) obtained
by integrating the second equation we can determine C such that the first
equation to be satisfied too. We say that U be a solution of (**), if
U(x, y, z) = 0 represents the implicit form of the solution z = z(x, y). In this
case there exists an integrand factor μ such that

μV1dx + μV2dy + μV3 dz = dU,

or, equivalently, μV


= grad U. In other notation, namely φ =


1
, and ψ = U,

this means V


=φ grad ψ. }

Another characterization of the bi-scalar fields is formulated in the more
geometrical terms involving the field lines:

3.10. Definition. The curve L  D is called field line of V


: D  T iff

V


(M) is tangent to L at each M  L. According to this definition, the
field lines are solutions of the system

321 V

dz

V

dy

V

dx
 ,

where two of the variables x, y, z are searched as functions depending on
the third one.

3.11. Theorem. V


: D  T is a bi-scalar field iff there exists a family of

surfaces in D, which are orthogonal to the field lines of V


.

Proof. If V


is bi-scalar, then V


|| grad ψ. Therefore V


is orthogonal to the

surface ψ = ψ(M0), where M0  L , and V


is tangent to L at M0.
Conversely, if the field lines are orthogonal to the family of surfaces

ψ(x, y, z) = const., then V


|| grad ψ,  hence V


= φ grad ψ. }

The following proposition introduces some of the most remarkable
properties related to bi-scalar fields, also known as Green formulas.
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3.12. Proposition. Let V


= φ grad ψ be a bi-scalar field in D  R3, and let

Ω  D be a regular domain of frontier S (as in the Gauss-Ostrogradski
theorem). If n


is the unit normal to S at the current point, then we have:

(i)  








S

dgradgraddS
n

]Δψ[

(ii)   
















S

ddS
nn

][

(iii)  







S

ddS
n
 .

Proof. (i) If we apply the Gauss-Ostrogradski theorem to V


= φ grad ψ, 

then we obtain V


n


=
n





 and div V


=φΔψ + grad φ grad ψ.

(ii) We write (i) for V


= φ grad ψ  and W


 = ψ grad φ, and subtract the
corresponding formulas.

(iii) Take ψ = 1 in (ii), such that
n





 = 0, and Δψ = 0. }

3.13. Remark. Condition V


rot V


= 0 is useful in practice in order to
recognize the bi-scalar fields. The problem of writing a bi-scalar field in the
form φ grad ψ may be solved using theorem 3.11. In fact, solving the

equation V


d r


 = 0, we find the family of surfaces ψ = const., which are

orthogonal to V


, hence V


|| grad ψ.  Finally, we identify φ such that

V


= φ grad ψ.
The last type of fields, which will be considered here, is that of the

"harmonic" fields. Even though they are more particular than the previous
ones, these fields are the object of a wide part of mathematics, called
harmonic analysis.

3.14. Definition. Let D be a domain in R3, and V


1
3R

C (D ). We say that

V


is a harmonic field iff it is simultaneously solenoidal and irrotational in
D. The scalar field U : D  R is said to be harmonic iff ΔU = 0

(alternatively we can say that U is a harmonic function).

A significant example of harmonic field is V


= k
3r

r


.

3.15. Theorem. Let D be an open and star-like set in R3, and let

V


: D  T be a field of class C1 on D. Then V


is harmonic on D iff

there exists a scalar field U : D  R, of class C2 on D, such that ΔU = 0

and V


= grad U in D.



Chapter IX. Elements of field theory

148

Proof. V


is irrotational iff V


= grad U. On the other hand, V


= grad U is
solenoidal iff ΔU = 0. }

The following theorem shows that the harmonic fields are determined by
their values on the frontier of the considered domain.
3.16. Theorem. Let D  R3 be open and star-like, and let Ω  D be a

regular compact domain, bounded by S.
(i) If the harmonic functions U1 and U2 are equal on S, then they are equal
on Ω.

(ii) If the harmonic vector fields 1V


and 2V


have equal components along

the normal to S (at each point, then 1V


and 2V


are equal on Ω.

Proof. (i) For U = U2  U1, we have ΔU = 0 on Ω, and U |S = 0. If we note

V


= U grad U, then

div V


= ||grad U||2 + UΔU = || grad U ||2,

and V


n


= U
n

U





= 0 on S.

Consequently, according to the Gauss-Ostrogradski theorem,




 0|||| 2 dgradU , hence grad U = 0.

So we deduce that U = constant, and more exactly, U = 0 on D since
U |S = 0. In conclusion, U1 = U2 on Ω.

(ii) Let us note V


= 2V


 1V


. Since 1V


n


= 2V


n


on S, we deduce that

V


n


= 0 on S. Because V


is harmonic, there exists U : D  R such that

V


= grad U. If we consider W


= U V


, it follows that

div W


= UΔU + ||grad U||2 = ||grad U||2

on D, and W


n


= U V


n


= 0 on S. Using again the Gauss-Ostrogradski
theorem, we obtain that




 0||U|| 2 dgrad ,

hence grad U = 0. Consequently, V


= 0 on D, i.e. 1V


= 2V


. }

3.17. Remark. The problem of finding the (unique) harmonic field, which
is specified on the frontier, is specific to the theory of differential equations
with partial derivatives of the second order. Without other details of this
theory, we mention that a lot of properties of the harmonic fields are
consequences of the previously established results concerning other
particular fields. For example, from proposition 3.12, it follows that

  









S S

dS
n

dS
n

 ,

and
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S

dS
n

0

whenever φ and ψ are harmonic functions.
   A problem which leads to the solution of the Poisson equation Δφ = λ is 
that of determining a field of given rotation and divergence:

3.18. Proposition. The field V


: D  T for which rot V


= a


, div V


= b,
where a


is a given vector field, and b are given scalar fields, is determined

up to the gradient of a harmonic field.

Proof. We search for a solution of the form V


= 1V


+ 2V


, where

















0

rot
and

0

2

2

1

1

Vdiv

aV

bVdiv

Vrot








.

Because 1V


is irrotational, there exists a scalar field φ on D such that

1V


= grad φ. The second condition on 1V


 gives Δφ = b. If φ0 denotes a

particular solution of this equation, i.e. Δφ0 = b, then φ = φ0 + Φ, where
ΔΦ= 0. Consequently, 

1V


= grad φ0 + grad Φ. (*)

Now, about 1V


, we remark that div a


= div rot 2V


= 0, hence a


is

solenoidal, and 2V


is a vector potential of a


. As usually, this potential is

determined up to a gradient, i.e.

2V


= 0V


+ grad ψ,

where 0V


is a particular vector potential of a


. On the other hand, because

div 2V


 = 0, we obtain Δψ =  div 0V


, which is another Poisson equation. If

ψ 0 is a particular solution of this equation, then may write ψ = ψ 0 + Ψ, 
where ΔΨ = 0. Consequently,

2V


= 0V


+ grad ψ0 + grad Ψ.  (**)

Using (*) and (**) we obtain

V


= 0V


+ grad (φ0 +ψ0) + grad Ξ 

where Ξ  = Φ + Ψ is an arbitrary harmonic function. }

3.19. Remark. The way of proving the above proposition furnishes a
practical method of finding a vector field for which we know the rotation
and the divergence. The concrete determination of the left function Ξ is 
dependent on the form of D , and of the values imposed on the frontier of

D. Solving the Laplace equation on D under given conditions on Fr D is a
specific problem in the theory of differential equations with partial
derivatives of the second order (see an appropriate bibliography).
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PROBLEMS § IX.3

1. Verify that the following fields are irrotational and find their potentials:

(i) V


= (3y + x2) i


+ (2y2 + 3xz) j


+ (z2 + 3xy)k


in Cartesian

coordinates;

(ii) F


= 12

1
l



in spherical coordinates;

(iii) W


= 2r z sin t 1l


+ r z cos t 2l


+ r2sin t 3l


in cylindrical coordinates.

Hint. Evaluate the rotation in the corresponding coordinates and evaluate

the line integrals of V


rd


 on particular broken curves (as in the previous
paragraphs).

2. Show that the field V


= r (


x r


) is solenoidal and find one of its vector

potentials, where 


is a constant (fixed) vector, r


= x i


+ y j


+ zk


is the

position vector of a current position in D = R3, and r = || r


||.

Hint. div V


= ( r)(


x r


) + r (


x r


) = 0 + r r


(  )  r


(x r


) = 0,

where 


 , hence V


is solenoidal. Since this property is intrinsic, we

can choose the reference system such that 


stays along the zaxis of a

Cartesian system. Because r


has an invariant form x i


+ y j


+ z k


, the

problem reduces to find the vector potential of the field

V


= r

zyx

kji

00



= r (y i


+ x j


).

Because looking for the vector potential of the form W


= (W1, W2, 0) as in
theorem 3.3, leads to inconvenient integrals, we may try other forms,

e.g. W


= (W1, 0, W3). In this case we have to integrate the system



































.01

31

3

y

W

xr
x

W

z

W

yr
y

W
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We find W3 = 
z

1
 r3 + φ(x, z), W1 = ψ(x, z) and according to the second

equation, 0









xz
. In particular, we can choose φ = ψ =0, hence a 

vector potential is W


= 
z

1
r3 k


= 

z

1
r3


.

3. Show that the following fields are solenoidal, but not irrotational, and
determine a vector potential for each one:

(i) V


= 2xy i

 y2 j


+ k


(ii) V


= x2 i


+ xz j

 2xz k



Hint. (i) Following theorem 3.3, we obtain
W2 = 2xyz + φ(x, y), W1 = y2z + ψ(x, y),

where 1









yx
; eg. φ = 2x, ψ = y.

(ii) Similarly, we find

W2 = x2z + φ(x, y), W1 =
2

1
xz2 + ψ(x, y),

where 0









yx
, as for example φ = φ (y) and ψ = ψ(x).

4. Show that for every irrotational and solenoidal field V


, we have

grad ( r


V


) + rot ( r


x V


) + V


= 0,
where r


is the position vector of the current point.

Hint. grad ( r


V


) = r


x rot V


+ V


x rot r


+
V

r

r

V















, and

rot ( r


x V


) =
r

V

V

r















+ r


div V

 V


div r


.

5. Evaluate the divergence and the rotation of the fields;
(i) r f(r) grad r + a


x r


(ii) f grad g x g grad f
(iii) r


x ( a


x r


).

6. We note u


= a


x r


, where a


is a constant vector and r


is the position
vector (as usually, u denotes the norm of u


). Find the conditions on the real

functions F and G of a real variable, such that:
(i) u


F(u) is irrotational

(ii) G(u) is harmonic.
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Hint. (i) rot [u


F(u) ] =
du

dF
(grad u + u


) + F(u)rot u


, where

grad u =
ra

ara




x

xx )(
, and rot u


= 2 a


.

Finally we obtain u
du

dF
+ 2F = 0.

(ii) ΔG =
du

dG
div grad u +

2

2

du

Gd
(grad u)2, where div grad u =

u

a2
, and

(grad u)2 = a2. Consequently, ΔG = 0 implies
u

1

du

dG
+

2

2

du

Gd
=0.

7. Verify that the following fields are bi-scalar, and write them in the
standard form φ grad ψ:

(i) V


= (a  z)y i


+ (a  z)x j


+ xy k


(ii) V


= grad f + f grad g

(iii) V


= r


x ( a


x r


).

Hint. (i) V


rot V


= 0. We write the equation of the surfaces, which are
orthogonal to the field lines (a  z)ydx + (a  z)xdy + xydz = 0, in the form

0





za

dz

xy

xdyydx
,

we deduce
za

xy


= constant. From the relation

V


= φ grad
za

xy



we identify φ =
2)(

1

za 
.

(ii) rot V


= grad f x grad g, hence V


rot V


= 0. The surfaces orthogonal to

the field lines have the equations feg = constant, hence V


= φ grad (feg),
where φ = eg.

(iii) Write V


= r2 a

 ( a


r


) r


; the orthogonal surfaces are cones of vertex 0
and axis a


, of equation a


r


= Cr, where C = constant. Like before,

V


= φ grad
r

ra



, where φ = r3.

8. Let { e


, e


, e


}  be the local base in spherical coordinates (ρ, φ, θ), 

and let V


=




sin

2cos
e


 2cosθ e


be a vector field. Show that V


is bi-scalar

and find the scalar fields f and g for which V


= f grad g.
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Hint. rot V


= 




sin

cos
e


, hence V


rot V


= 0. Using the formula

d r


= e


dρ + ρsinθ e


dφ + ρ e


dθ,

the equation V


d r


= 0, of the surfaces orthogonal to V


, becomes










d

d

2cos

2sin
,

This equation has solutions of the form  ρ2 cos 2θ = C, i.e. g =ρ2 cos 2θ. 

From V


= f grad (ρ2 cos 2θ ),   where   
grad g  = 2ρ(cos 2θ e


 2sinθcosθ e


),

we deduce f =
sin2

1
.

9. Show that the field V


= r
r

ra

r

a 


53

)(3 
 , where a


is a constant vector,

and r


is the position vector , is harmonic, and find a scalar potential of V


.

Hint. rot V


= 0, div V


= 0; V


= grad U, where U =
3r

ra



+ const.

10. Determine the harmonic functions (scalar fields) which depend only on
one of the spherical coordinates ρ, φ or θ.
Hint. If U depends only of , then the Laplace equation, ΔU = 0, reduces

to .02 















 U

If so, it follows that U(ρ) =

1c + c2.

Similarly, U(φ) = c1φ + c2, and U(θ)= c1ln tg
2


+ c2 .

11. Determine the field V


: R3  T , for which

rot V


= (y  z) i


+ (z  x) j


+ (x  y) k


and div V


= 2z  x.

Hint. Decompose V


= 1V


+ 2V


, where

rot 1V


= 0, div 1V


= 2z  x,

and

rot 2V


= (y  z) i


+ (z  x) j


+ (x  y) k


, div 2V


= 0.

It follows that 1V


= grad φ, where Δφ = 2z  x. Taking

φ0 = 
6

1
x3 

3

1
z3,
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we obtain φ = φ0 + Φ, where ΔΦ = 0. Consequently,

1V


= 
2

1
x2 i

 z2 k


+ grad Φ.

On the other hand 2V


= 0V


+ grad ψ, where 0V


= W1 i


+ W2 j


+ 0 k


is a

particular vector potential of (y  z) i


+ (z  x) j


+ (x  y) k


. In particular,

W1 =
2

2z
 xz + g(x, y) and W2 =

2

z
 yz + f(x, y), where

y

g

x

f









= x  y.

Taking for example f =
2

2x
, g =

2

2y
, we obtain

2V


= (
2

2z
 xz +

2

2y
) i


+ (
2

2z
 yz +

2

2x
) j


+ grad ψ.

Condition div 2V


 = 0 leads to Δψ = 2z, which is verified by  ψ0 = z2, hence

ψ = z2 + Ψ,  where  ΔΨ = 0. Since grad ψ0 = 2zk


, we obtain

2V


= (
2

2z
 xz +

2

2y
) i


+ (
2

2z
 yz +

2

2x
) j


+2zk


+ grad ψ.

The solution of the problem is

V


= 1V


+ 2V


=

= (
2

2x
+

2

2y
+

2

2z
 xz) i


+ (

2

2z
 yz +

2

2x
) j


+ (2z  z2)k


+ grad Ξ,

where Ξ = Φ + Ψ is an arbitrary harmonic function.
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CHAPTER X. COMPLEX INTEGRALS

§ X.1. ELEMENTS OF CAUCHY THEORY

By its construction, the complex integral is similar to the real line integral
of the second type. And yet, the properties of the complex integrals of the
derivable functions are so important from both theoretical and practical
point of view that they are frequently qualified as nucleus of the Classical
Mathematical Analysis. As examples of remarkable results we mention the
fundamental theorem of Algebra (D’Alembert), the unification of the
integral and differential calculus (Cauchy theorems allowing the evaluation
of some integrals by derivations), and the applications to the real integral
calculus (including some improper integrals). This part of the Complex
Analysis is known as Cauchy Theory.

We begin by introducing the complex integral in its most general sense,
i.e. for arbitrary functions:
1.1. The construction of the complex integral. Let f : DC be a complex

function of a complex variable ( D C), and let D be a simple piece-

wise smooth curve (the matter about plane curves in §VI.1 remain valid
since R2 ~ C). We note by  : ID, where I = [a, b]R, and  (I) =  , a

complex parameterization of  ; more exactly,  (t) = (t) + i  (t), where









)(

)(

ty

tx




, ],[ bat

represents the real parameterization of  (refresh § I.2 for more details).
A partition of  is defined as a finite set of points on  , which is noted

}...,,0:)({ 10 btttanktz nkk   ,

where A =  (a) and B =  (b) are the endpoints of  . The number

},1,:max{)( 1 nkzzz kkk   

is called norm of the partition  .
With each partition we associate systems of intermediate points, which

are sets of the form (see Fig. X.1.1)

S = },,1:)({ 1 kkkkk ttnk    .

Finally, the numbers





n

k
kkkf zzf

1
1, )()(),(   S

are called Riemann integral sums of the function f on the curve  , attached
to the division  and to the system S of intermediate points.
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t


3 2I t

t



a = t

b = t

A = a( )

B = b ( )

0

1

k

k+1

t
k

R

z

z


k

k

z1

nk+1

2



1.2. Definition. We say that f is integrable on the curve  if there exists
the limit of the generalized sequence (net) of integral sums




),(lim ,
0)(

S 


f C.

Alternatively, if we work with usual sequences of integral sums, then we
ask the uniqueness of this limit for all sequences of partitions (p) with

0)( p , and all systems of intermediate points.

If this limit exists, then we call it integral of f on  , and we note it

  dzzf )( .

The notation   dzzf )( is sometimes agreed, since the complex integral

is defined on curves, by analogy to the real line integral.
The first natural question about a complex integral concerns its existence

and evaluation. This is solved by the following:
1.3. Theorem. The continuous functions are integrable on piece-wise
smooth curves, and their integrals reduce to real line integrals of the second
type. More exactly, if f = P + i Q, then

 


PdyQdxiQdyPdxdzzf )( .

Proof. If kkk i  = )( k , where nk ,1 , then the values of f are

),(),()( kkkkk iQPf   .

Similarly, if we note  kkk iyxz for all nk ,1 , then

2
1

2
11 )()(   kkkkkk yyxxzz ,

hence )( equals the norm of  as partition of the real curve  in R2 . If

we introduce these elements in the complex integral sums of f on  , then
we can separate the real and imaginary parts of these sums, and we obtain:
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n

k
kkkkkkkkf QP

1
11, )](),()(),([),(   S +

+ i 


 
n

k
kkkkkkkk PQ

1
11 )](),()(),([  .

It is easy to see that these sums converge to the real line integrals

0)(
lim





QdyPdx 


 
n

k
kkkkkkkk QP

1
11 )](),()(),([ 

0)(
lim





PdyQdx 


 
n

k
kkkkkkkk PQ

1
11 )](),()(),([  .

These limits exist according to theorem }

1.4.Corollary. If f : DC is a continuous function, and D is a piece-

wise smooth curve of parameterization  : [a, b]C, then

  dzzf )( = 
b

a
dtttf )())(( / .

Proof. The complex parameterization  (t) = (t) + i  (t), ],[ bat , comes

from the real parameterization









)(

)(

ty

tx




, ],[ bat ,

hence the hypothesis that is piece-wise smooth means that the functions
 and  (and consequently  ) have continuous derivatives on a finite
number of subintervals of [a, b]. The real line integrals from the previous
theorem become definite Riemann integrals on [a, b], i.e.

 dttttQtttPQdyPdx
b

a  )())(),(()())(),(( // 


,

 dttttPtttQPdyQdx
b

a  )())(),(()())(),(( // 


.

To accomplish the proof, we replace f = P + i Q, and  = 
 + i  in

these integrals, and restrain the result in a complex form. }

1.5. Example. The function f : C \ {z0 }C , of values 1
0 )()(  zzzf ,

is integrable on the circle C(z0 , r), centered at z0 , of radius r > 0, and

 
),(

00

2
rzC

i
zz

dz
 .

In fact, the integral exists because f is continuous on D = C \ {z0 }, hence

also on C(z0 , r), and the circle (traced once) is a simple smooth curve in D.
Using the complex parameterization of this circle

tierzt  0)( , ]2,0[ t ,
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we obtain tieirt )(/ , and
tier

tf
1

))((  . Consequently, according to

the formula from Corollary 1.4, the value of the integral is

  
),(

2

0
00

2
rzC

idti
zz

dz



.

The general properties of the complex integrals correspond to the similar
properties of the real line integrals of the second type:
1.6. Theorem. The following relations hold for continuous functions on
piece-wise smooth curves:

(i)   
 

 dzzgdzzfdzzgf )()())(( ,   , C, )(, 0 CCgf 

(known as linearity relative to the function);

(ii)   21

)(


dzzf = 
1

)(


dzzf + 
2

)(


dzzf , )( 21
0   CCf

(called additivity relative to the concatenation of the curves);

(iii)   
 

dzzfdzzf )()( , )(0 CCf  , where  and are contrarily

traced (named orientation relative to the sense on  ).
Proof. Without going into details, we recognize here the similar properties
of the real line integrals of the second type, hence it is enough to recall the
connection established in Theorem 1.3. }

The following property of boundedness reminds of real line integrals of
the first type, since it involves the length of a curve.
1.7. Theorem. (Boundedness of the complex integral) Let f and  be as in
the construction 1.1. If )(sup zfM

z 
 , and L is the length of  , then

LMdzzf  )( .

Proof. Because I = [a, b] is a compact set in R, and the parameterization 

is continuous, it follows that  =  (I) is a compact set in C. The continuity

of f assures the existence of M , such that Mf )( at all   .

Since the smooth curves are rectifiable (i.e. they have length), there exists

 




n

k
kkk

def

zzzL
1

1

.

}:{ 


sup .

Consequently, for the modulus of the integral sums, we obtain

MLzzMzzf
n

k
kk

n

k
kkkf  







1
1

1
1, )(),(   S ,

where it is enough to take the limit 0)(  . }
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1.8. Corollary. Let D be a domain in C, and let D be a piece-wise

smooth curve. For each n N, we define a function fn : DC, which is

continuous on  . If the sequence ( fn ) is uniformly convergent on  , then







dzzfdzzf n
n

n
n

)(lim)(lim .

Proof. By hypothesis, n
n

u
ff


 lim
.


means that for each  > 0 there exists

n0 () N, such that n > n0 () implies

)()(sup
.

zfzfM n
z

not



<

L


,

where L stands for the length of  . According to theorem 1.7, we obtain




  dzzfdzzfn )()( ,

which is a reformulation of the claimed equality. }

1.9. Corollary. Let function f be analytically defined by







0

0 )()(
n

n
n zzazf .

If  is a piece-wise smooth curve in the disk of convergence of this power
series, then we may integrate term by term, i.e.

  





 

0
0 )()(

n

n
n dzzzadzzf .

Proof. The partial sums of the given power series can play the role of f n in
the previous Corollary. }

1.10. Remark. An important property of the real line integrals of the
second type concerns the independence on curve. In § VI.3, we have seen
that this is the case of conservative fields, which derive from a potential.
Simple examples (see the problems at the end, as well as 0I in Example
1.5, etc.) show that the complex integral generally depends on the curve of
integration. However, if the integrated function is C-derivable, then its

integral does not depend on curve, but only of its endpoints. The following
theorem states conditions for this case, which will be assumed in the entire
forthcoming theory:
1.11. Cauchy’s Fundamental Theorem. Let f : DC, where D C, be a

C-derivable function, and let D be a simple, closed, piece-wise smooth

curve. If the interior of  is included in D, i.e. D)( , then

 dzzf )( = 0 .
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Proof (based on the additional hypothesis that )(, 1 DCfQfP R ImRe ).

The integrability of f on  is assured by Theorem 1.3. The additional
hypothesis allows us to use the Green’s formula from § VII.2, which gives

 


QdyPdx = –  
















)(

dxdy
y

P

x

Q

 


PdyQdx =  
















)(

dxdy
y

Q

x

P
.

Because f is derivable on D, hence also on ( ), it follows that the Cauchy-
Riemann conditions hold, hence the double integrals from above vanish. It
remains to use Theorem 1.3. }

1.12. Remark. The assertion of the above theorem is correct without
additional hypotheses, but the proof becomes much more complicated (see
for example [CG], [G-S], [H-M-N], [MI], etc.).

Before discussing more consistent consequences of the above Theorem
1.11, we mention several immediate corollaries, which are also significant
for the relation between complex and real integrals. These properties hold
on domains of a particular form:
1.13. Definition. We say that a domain D C is simply connected if the

interior of every closed curve from D is also in D, i.e.
D   D)( .

In the contrary case, when there exist curves D for which D)( ,

we say that D is multiply connected (anyway, D is connected, since domain
means open and connected). Here we avoid further considerations on the
order of multiplicity (based on homotopic curves), and other properties of
the domains, but the interested reader may consult [BN], [G-S], [LS], etc.
1.14. Examples. (a) The following sets are simply connected:

 C , C , }0:{  zz ReC , and other half-planes;

 Disks (i.e. interior of circles), and interior of simple closed curves;
 Arbitrary intersections of simply connected sets.

(b) Most frequently, the multiply connected sets have the form:
 C \ {z0 }, C \ F, where F  C is finite, C \ N, etc.

 D(z0 , r) \ {z0 }, i.e. disks without center, D(z0 , r) \ F, where F is a
finite (or even infinite) set of “missing” points;

 Connected sets with “missing” points or “missing” sub-domains.
1.15. Corollary. If D C is a simply connected domain, and f : DC is a

derivable function, then:
(i) The integral of f does not depend on the curve;
(ii) f has primitives on D ;
(iii) The Leibniz-Newton formula holds for the integral of f .
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Proof. (i) Let 1 and 2 be two curves in D, which have the same endpoints,

say A and B. The curve  =  21  , obtained by concatenation, is closed,

and since D is simply connected, we have D)( . According to Theorem

1.11, it follows that  dzzf )( = 0, hence by virtue of properties (ii-iii)

from Theorem 1.6, we obtain 
1

)(


dzzf – 
2

)(


dzzf = 0 .

(ii) We fix z0 D, and we prove that the function F : DC , of values


z

z
dfzF

0

)()( 

is a primitive of f , i.e. F is derivable on D and F / = f . In fact, for each
z0D, there exists 0)(0 z , small enough to assure the implication

Dzzzz  )(0 .

Because 



zz

z
zd holds at all z and z in C, we may write

)(
)()(

),(
.

zf
z

zFzzF
zzE

not





 =

=  









zz

zz

zz

z

zz

z zz
dzffdzfdf  )()()()( 111 .

Using the independence on curve of the last integral, we may evaluate it
on the straight-line segment [z, z + z]. For this integral, the Property 1.7,
of boundedness, holds with zL  , hence

]},[:)()({),(
.

zzzzffMzzE
not

 max .

The derivability of f implies its continuity, hence for each  > 0 there is a
 () > 0, such that )}(),({ 0 zz min implies  )()( zfzzf . In

this situation, a fortiori   )()( zff , hence

)(
)()(

lim)( /
.

0
zF

z

zFzzF
zf

not

z








.

(iii) We have to show that the formula

)()()( 12
2

1

zGzGdzzf
z

z


holds for arbitrary Dzz 21, , and for arbitrary primitive G of f . In fact, the

previous property (ii) points out a particular primitive of f , namely


z

z
dfzF

1

)()(  .

Because the difference of two primitives of the same function is a constant,
i.e. (F – G) / = 0 implies the existence of CC, we have F(z) – G(z) = C at

all zD. In particular, we take here z = z1 and z = z2 . }
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We start the series of major consequences of the fundamental theorem by
the case of a multiply connected domain:
1.16. Theorem. Let DC be a domain, and let , 1, ..., n be pair-wise

disjoint closed (and, as usually, simple and piece-wise smooth) curves in D.

If f : DC is a derivable function on D, and D
n

k
k 















1

)(\)(  , then

 dzzf )( =  


n

k k

dzzf
1

)(


.

Proof. The idea is to apply the fundamental theorem 1.11 to f and some
closed curve  , for which D)( . To make it possible, we take kA

and kkB  for each nk ,1 , e.g. the closest points between  and k , and

we connect them by straight-line segments (as in Fig. X.1.2). The sought
for curve  results by the following concatenation:

],[...],[],[
211 11111 nnAAAA ABABBA

n
   .

0

D

x z= Re

y z= Im

Fig. X.1.2.









1

2

n. A

B

B

B

A
A1

1

2

2

n

n

Consequently, according to 1.6 (ii), we can decompose the integral on 
in a sum of integrals on the constituent arcs. Because the segments [Ak , Bk ]
and [Bk , Ak ] are opposite in order, we have

 
],[],[

)()(
kkkk ABBA

dzzfdzzf = 0 .

In addition  
 nnn AAAAAA 1211

... , hence

 



dzzfdzzfdzzfdzzf

nAnAAAAnA

)()(...)()(
1211

.

To complete the proof, we apply the property 1.6 (iii) on 
k , nk ,1 ,

and the fundamental theorem on  , i.e.  dzzf )( = 0. }
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1.17. Remarks. The main applications of the above theorem consist in
reducing the integral on  to integrals on k , which in general are simpler.

In particular, if n =1, then  
1

)()(


dzzfdzzf , whenever D)(\)( 1 .

This property is frequently formulated in terms of continuous deformation
of  to 1 , realized inside D. For example, using 1.5, we obtain that

 


 i
zz

dz
2

0

holds for arbitrary curve  under the condition )(0 z . To complete the

list of values of this integral, we mention that it vanishes if )(0 z , i.e. z0

is exterior to  , and the case 0z is undecided (see the next section).

The next theorem, by Cauchy too, states a remarkable relation between
integrals and derivatives:
1.18. Theorem (Cauchy formulas for derivable functions). Let f : DC

be a derivable function on the domain DC. If  is a closed (simple and

piece-wise smooth) curve in D, such that D)( , then the formula

 



dz

zz

zf

i

n
zf

n
n

1
0

0
)(

)(

)(

2

!
)(

holds at every )(0 z , and for arbitrary nN .

Proof. Case n = 0. We have to show that

izfdz
zz

zf



2)(

)(
0

0


 .

Using the result in Example 1.5, and Remark 1.17, this relation becomes

 


 
0

0
0

)(
)(

zz

dz
zfdz

zz

zf
.

Because f is derivable at z0 , there exists M > 0 such that the inequality

M
zz

zfzf






0

0 )()(

holds at all z in a neighborhood of z0 . If we replace  = C(z0 , r), then
according to Theorem 1.7, we have

rMdz
zz

zfzf
rzC

2
)()(

),(
0

0

0





 .

It remains to take 0r .
The remaining cases involve mathematical induction and will be omitted

(the interested reader may consult [CG], [G-S], etc.). We mention that an
important part of the proof concerns the implicit assertion of the theorem,
namely the existence of all higher order derivatives at each point of the
domain where f is once derivable. }
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1.19. Corollary. If the function f : DC is derivable on the domain DC,

then it is infinitely derivable on D, i.e. there exist )( 0
)( zf n at each Dz 0 ,

and for all nN .

1.20. Remarks. We may use the Cauchy formulas for derivable functions
to evaluate complex integrals by the simpler way of derivation. The case in
1.5 is immediately recovered from Theorem 1.18, applied to the identically
constant function f :C{1}; no derivation is necessary. The same theorem,

applied to the same function, leads to

 
 ),( 1

0
0

0
)(rzC nzz

dz

at all 0z C, and for all r > 0, n N*.

A lot of complex integrals allow the form of the Cauchy formulas, hence
we can calculate them by derivations. For example,

 


















)1,(

/

2)1,( 2
)(

1

22 )(

1
2

)()1(

2

iC
iz

iC

iz

iz
idz

izz

dz


follows for z0 = i , n = 1, and   2)(  izzf .

The Cauchy formulas have important theoretical consequences:
1.21. Theorem (bounding the derivatives). Let f : DC be a derivable

function on the domain DC, and let Dz 0 . If  = C(z0 , r), and r is small

enough to ensure the inclusion D)( , then

n
n

r

rzMn
zf

),(!
)( 0

0
)(  ,

where )},(:)({),( 00 rzCzzfrzM  sup , and nN .

Proof. If we apply Theorem 1.7 to the Cauchy formula for f (n) , then we get



















),(:
)(

2

!
)( 01

0

0
)( rzCz

zz

zf
L

n
zf

n
n sup


,

where L = 2 r is the length of  . }

1.22. Theorem (Liouville). If a function is derivable on the entire complex
plane, and bounded, then it is necessarily constant.
Proof. Using the hypothesis of boundedness, we may note )(sup zfM

z C

 ,

such that the inequality MrzM ),( 0 holds for arbitrary 0z C, and r > 0.

According to the previous theorem, written for n = 1, we have

0)( 0
/




rr

M
zf .

Consequently f / = 0 on C, hence f reduces to a constant. }
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Finally, a remarkable consequence of the Cauchy Theory is the following
property of C of being algebraically closed, which is considered to be the

fundamental theorem of the Algebra:
1.23. Theorem (D’Alembert). Every polynomial Pn , of degree n 1, with
coefficients from C, has at least one root in C.

Proof. In the contrary case, when Pn never vanishes on C, we can define a

function f : CC, which takes the values )(1)( zPzf n . According to the

algebraic properties of the derivable functions (discussed in Chapter IV), it
follows that f is derivable on C. In addition, f is bounded. In fact, because




)(lim zPn
z

, we have 0)(lim 


zf
z

, hence there exists some r > 0, such

that 1)( zf whenever rz  . The boundedness of a continuous function

on compact sets guarantees the existence of a number Mr > 0, such that
   rMzfrz  )( .

Since f is derivable and bounded on C, the Liouville’s Theorem says that

f is constant, which is not the case if n 1. }

The list of consequences of the Cauchy’s fundamental theorem continues
with many other remarkable results, including those from the next section.
Without going into details, we enounce here an extension of the Corollaries
1.8 and 1.9, which shows that the Cauchy Formulas “resist” to a limiting
process:
1.24. Theorem (Weierstrass). Let DC be a domain. If:

(i)  is a closed (simple and piece-wise smooth) curve in D, and D)( ;

(ii) fn :DC are derivable on D , n N;

(iii) there exists n
n

u
fF


 lim
.


;

then there exists n
n

ua
f


 lim

..

)(
 , such that

(a) )(:  C is derivable;

(b) )(
..

)(

)( lim k
n

n

ua
k f





 , k N; and

(c)  










 d

z

F

i

k
z

k
k

1
)(

)(

)(

2

!
)( , z ( ), and k N .

In particular, we may apply this theorem to series.
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PROBLEMS §X.1.

1. Evaluate the integrals on [0, 1] of the following complex functions:

(a)
it

it
tf




)( , (b) tietg )( , (c) )sin()( tith  , (d)

ti

ti
ti )(sign .

Hint. Identify the real and imaginary parts of the given functions, and

integrate them separately. In the example (a), from
1

2

1

1
)(

22

2









t

t
i

t

t
tf ,

we obtain

dt
t

t
idt

t

t
dttf 









1

0 2

1

0 2

2
1

0 1

2

1

1
)( =  

1

0

21
0

)1(ln2  tiarctgtt .

2. Evaluate the complex integral  
 dzzI )( along the following curves:

(a) Straight-line segment  = [–i, i] ;
(b) Left-hand half-circle centered at 0, of radius 1 ;
(c) Broken line ],1[]1,[ ii  .

Hint. The integral refers to the real function z , but the variable is complex.

Replace z and dz from the parameterization of the curve, according to the
formulas in 1.3 and 1.4.

3. Study whether  


dzzi )( depends on  or not, where  is a curve of

endpoints z0 = 0 and z1 = 1 + i .
Hint. According to theorem 1.11, since the function zi  is not derivable,
there are chances the integral to depend on the curve. To point out this
dependence, evaluate the integral on the straight-line segment [0, 1 + i], on
the broken line [0, 1] ]1,1[ i , and on arcs of parabola, circle, etc.

4. Let  be a closed (simple and piece-wise smooth) curve in C. Show that

the area of ( ) has the expression




dzz
i

A
2

1
.

Hint. If we note z = x + iy, then Theorem 1.3 leads to real line integrals

 


dyxdxyidyydxxdzz .

The real part of this expression vanishes as an integral of a total differential

)( 22
2
1 yxddyydxx  .

According to Proposition VI.3.15, the imaginary part equals 2A .
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5. Some of the following complex integrals can be calculated by Leibniz-
Newton formulas. Identify them, and find their values.

I1= 
1

1
dzez ; I2= 

i

i

z dzze sin ; I3 = 
i

dzzz
1

2cos ; I4 = 
1

1 z

dz
; I5 = 

)1,0(C

dzz .

Hint. The method is working for I1 (as in R), I2 (by parts), and I3 (changing

2z ). In I4 , the domain C \ {0} is not simply connected, and in I5 we

have a multi-valued function. However, there exist convenient cuts.

6. Evaluate 



),0( 2 1

)(
rC z

dz
rI , where 10  r .

Hint. If )1,0(r , then I(r) = 0 according to the fundamental theorem 1.11.

If r > 0, then using theorem 1.16 with convenient r1 , r2 > 0, we obtain

  





),( 2),( 2
2211 11

)(
riCriC z

dz

z

dz
rI .

Taking into account the example 1.5, and the decomposition

izizz ii 







11

1

1
2
1

2
1

2
,

we find I(r) = 0 again.

7. Using the Cauchy formulas, evaluate the integrals:

I1 = 



21

235 2322
iz

zzzz

dz
; I2 = 

)1,0(
35 2C zz

dz
;

I3 = 
)1,0(

sin

1

C

dz
z

; I4 = 


)1,0(
sin

1

C

z

dz
zz

e
; I5 = 

 11
22 )1(

sin

z

dz
z

z
.

Hint. In I1 , use the Horner schema to find the roots of the denominator. In
I2 , the Cauchy formula holds with z0 = 0, and n = 2. In I3 , put forward the

function
z

z

sin
. In I4 , we have 1

sin

1
lim

0




 z

ez

z
, and in I5 , 1

1

sin
lim

1


 z

z

z


.

8. Evaluate 
 23

2)12(

)(

z

d
F





, where 












0

12
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)1(
)(

k

k
k

k
F  .

Hint. The power series of F is convergent in the unit disk, where we can

use the Weierstrass theorem. Take into account that
2

/

1

1
)(

z
zF


 .
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§ X.2. RESIDUES

This section is a further development of the idea of reducing the integrals
to derivatives via special (namely Laurent) power series. The theoretic
basis follows from the Cauchy theory, which has been sketched in the
previous section. From a practical point of view, the interest is to gain new
powerful tools for the calculus of complex as well as real integrals.
2.1. Theorem (Laurent). Let D C be a domain, and let z0 C be a point

such that DRrz  ),,( 0 for some Rr, R+ , r < R, where

}:{),,( 0

.

0 RzzrzRrz
not

 C

represents the crown centered at z0 , of radiuses r and R (as in Fig.X.2.1). If
f : DC is derivable on D, then, at each ),,( 0 Rrzz  , its value is

...)(...)(...
)(

...)( 0010
0

1

0







  n
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p
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zz

a

zz

a
zf

Proof. We express f (z) by the Cauchy formula, using the closed curve

],[],[ ABCBAC rR   .

z0



Re z

Im z

R

r

O

Fig.X.2.1.
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In fact, DRrzz  ),,()( 0 , hence Theorem X.1.18 gives
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Because   
 ],[],[ ABCBAC rR

and 0
],[],[  

ABBA
, we obtain
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In the last integrals,  has different positions relative to z0 and z, namely:
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Case I. RC , hence 00 zzz   . Consequently, in 
RC

we have


 z

1

)(

1

00 zzz 
=
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00 1
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.
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, the last fraction is the sum of a geometric series, i.e.
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holds for all RC , in the sense of the uniform convergence. If we put


 z

1
...

)(

)(
...

)(

1
1

0

0
2

0

0

0












 n

n

z

zz

z

zz

z 

in 
RC

, then we may integrate term by term, and so we obtain
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We claim that this series (of positive powers) is a.u. convergent relative
to ),,( 0 Rrzz  . In fact, the remainder of order n equals

Rn 
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Using the a.u. convergence of the geometric series on ),,( 0 Rrz , we find

Rn = 
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If we note   0z , then we have   Rz0 . According to

Theorem X.1.7, the following inequality holds

|Rn | R
RR

M
n





2

2

1
1















,

where }:)({ RCfM  sup . From  < R we deduce
n

lim Rn = 0.
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Case II. rC , hence 00 zzz  . In this case, in 
rC

we write
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1

)(

1

00 zzz  
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0

00 1

11

zz

zzz






 

.

Considerations similar to those from Case I lead to the development
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A similar evaluation of the remainder

rp

.def

 






1 0)(pk
k
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a

leads to the conclusion that
n

lim rp = 0.

Combining the two cases, we obtain the proof of the claimed equality

f (z) = 






1 0 )(p
p

p

zz

a
+ 






0

0 )(
n

n
n zza

in the sense of the a.u. convergence of each series on ),,( 0 Rrz . }

2.2. Remarks. We usually refer to the series

...)(...)(...
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a

introduced by Theorem 2.1, as a Laurent series. This series has two entries,
and its convergence means concomitant convergence of the two series,







0

0 )(
n

n
n zza , called regular part (Taylor, of positive powers, etc.),

and 






1 0 )(p
p

p

zz

a
, called principal part (of negative powers, etc.).

The formulas for an and a – p are similar, via the correspondence n! – p.

The integral in an looks like the Cauchy formula for f (n) (z0 ), but generally
speaking Theorem X.1.18 cannot be applied, since   DCR  .

The coefficient a – 1 has a direct connection with the integral of f , namely


rC

df
i

a 


)(
2

1
1 .

Its special utility in evaluating integrals justifies its distinguishing name:
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2.3. Definition. Let us consider D, z0 , ),,( 0 Rrz , and f, as in the above

Theorem 2.1. If the hypotheses of this theorem are satisfied for arbitrarily
small radiuses r > 0, r < R, then we say that the Laurent series is developed
around z0 . In this case, the coefficient a –1 of the corresponding Laurent
series is called residue of f at z0 , and we note

a –1 = Rez (f , z0 ) = Rez f (z0 ), etc.

2.4. Example. Function 12 )23()(  zzzf is defined on C \ {1, 2}. To

obtain its Laurent series in )2,1,0( , we decompose it in simple fractions
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Because 21  z , these fractions represent sums of the geometric series
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Consequently, the Laurent series of f in the crown )2,1,0( gives

...
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...)(
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zf .

The coefficient a –1 = 1 from this Laurent series does NOT represent the
residue of f at z0 = 0, since the development is not valid around z0 . To get
this residue, we write the geometric series for 1z (which implies 2z ),

...
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The resulting Laurent series (around 0) has only positive powers, namely

...
8

7

4

3

2

1
)( 2  zzzf

hence Rez (f , 0) = 0.
To obtain Rez (f , 1), we consider 11 z in the geometric series

...)1()1(1
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2

1 2 
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and we write the Laurent series of f around 1 , which is

...)1()1(1
1

1
)( 2 




 zz

z
zf

Consequently, Rez (f , 1) = –1.
Similarly, we find Rez (f , 2) = +1.
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2.5. Remark. We can develop a function f : DC around z0 C in the

following cases only:
1. z0D,
2. z0 is a pole, or
3. z0 is an essential singular point.

In the first case, z0 is a regular point, and the Laurent series contains only
positive powers; more exactly, it reduces to a Taylor series

...)(
!2

)(
)(

!1

)(
)()( 2

0
0

//

0
0

/

0  zz
zf

zz
zf

zfzf

In fact, according to the fundamental theorem X.1.11, the coefficients of
the Laurent series (see Theorem 2.1) have the values




 
rC

p
p dzf

i
a 


1

0 )()(
2

1
= 0 , p N*

and according to the Cauchy formulas X.1.18,

 


RC nn d
z

f

i
a 





 1
0 )(

)(

2

1
=

!

)( 0
)(

n

zf n

, n N

Except Case 1, z0 can be univalent isolated singular point. The principal
part of the Laurent series around z0 cannot vanish any more, and the single
difference we can make refers to the number of terms. If the principal part
of the Laurent series around z0 has a finite number of terms, i.e.

...)(...)(...
)(

)( 0010
0

1

0







  n
np

p
zzazzaa

zz

a

zz

a
zf

then p
p

zz
azfzz 


 )()(lim 0

0

is finite, hence z0 is a pole (Case 2).

The remaining possibility for the principal part of the Laurent series
around z0 is to contain infinitely many terms. Here we recognize Case 3,

when )()(lim 0
0

zfzz p

zz



does not exist, p N* .

The evaluation of the residues at poles reduces to derivations:
2.6. Proposition. If f : DC has a pole of order p at z0 , then

Rez (f , z0) =  
0

)()(
!)1(

1
01

1

zz

p
p

p

zfzz
dz

d

p









.

Proof. By hypothesis, function f has the development

...)(...)(...
)(

)( 0010
0

1

0







  n
np

p
zzazzaa

zz

a

zz

a
zf

The resulting development of the function )()()( 0 zfzzz p has Taylor

coefficients, hence   !)1()( 0
)1(

1  
 pza p . }
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2.7. Corollary. The residue of a meromorphic function, say
B

A
f  , where

A and B are derivable on D, at a simple pole z0D, is

Rez (f , z0) =
)(

)(

0
/

0

zB

zA
.

Proof. It is easy to see that f has a pole of order p at z0 iff fF 1 has a

zero of the same order at this point. In our case, this means that

0)( 0 zA , 0)( 0 zB , and 0)( 0
/ zB .

To complete the proof, we take p = 1 in the previous proposition. }

2.8. Examples. (i) Function
z

zf
sin

1
)(  has a simple pole at z0 = 0 (divide

power series, if not convinced). The above corollary gives Rez (f , 0) = 1.

(ii) The same point z0 = 0 is double pole of the function
2sin

1
)(

z
zg  . For

p = 2, the formula from the Proposition 2.6 leads to

Rez (g, 0) =

0
2

2

sin
















z
z

z

dz

d
=

22

232

0 sin

cos2sin2
lim

z

zzzz

z




= 0.

In this case, the method of operating with series seems to be a simpler
than deriving. In the Laurent series we may look only for a –1 = Rez (g, 0).
(iii) To find the residue of a function at an essential singularity, we have to
develop in Laurent series, and identify the coefficient a –1 . For example,

h(z) = 




















0

12
1

!)12(

)1(1
sin

k

kk

zkz

has an essential singularity at z0 = 0, and a –1 = Rez (h, 0) = 1.
2.9. Remark. As we have already mentioned in § IV.5, the classification of
the singular points refers to the point at infinity too. In particular,  can be
univalent isolated singular point of a function f : DC , which means that

there exists some r > 0 such that

{ ( ),0( rC ) }:{
.

rzz
not

 C D.

This condition shows that  is the only singular point in a neighborhood

),( rV 
.def

 { ( ),0( rC ) }{ .

In the spirit of Theorem 2.1, we may interpret { ( ),0( rC ) as a crown

),,0(  r , and the Laurent series as a development around  . If this series

contains only negative powers of z, i.e. it has the form

0
1......)( a

z

a

z

a
zf

p
p

 
,
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then we consider that  is a regular point (since 0)( af  makes sense).

In the contrary case, when positive powers do exist, we consider that 
is a singular point, and we make the distinction between pole and essential
singularity by the number (finite or infinite) of positive powers.

For example, in the crown ),2,0(  , the function 12 )23()(  zzzf

from 2.4, has the development

)1(1

11

)2(1

11
)(

zzzz
zf





 = ...

31
32


zz
Consequently,  is a regular point of f . On the other hand,  is a simple

pole of the function )2(2 zz , and essential singular point of ze .

Recalling the final part of the Remark 2.2, we may speak of residue at  ,
which should be naturally related to the integral on Cr . Because the border

of ),,0(  r is ),0( rC , this “residue” should assure the relation

Rez (f ,  ) =   ),0(
)(

2

1
rC

df
i




.

More exactly, the expression of the Laurent coefficients in Theorem 2.1,
are suggesting the following:
2.10. Definition. Let  be univalent isolated singular point of the function
f : DC, and let r > 0 be a number for which ),,0(  r D. If a –1 is the

coefficient of 1/z in the Laurent series of f in ),,0(  r , then – a –1 is said

to be the residue of f at  , and we note

Rez (f ,  )
.def

 – a –1 .
Alternatively, if we note g(z) = f (1/z), then the change z1 leads to

  ),0(
)(

rC
df  =  ),0( 21

)(

rC
dz

z

zg
,

hence we may define the residue of f at  by the coefficient b1 in the
Laurent series of g in the crown )1,0,0( r .

There is no formula similar to that in Proposition 2.6 for the evaluation of
the Rez (f ,  ), so we have always to realize Laurent series around  .

2.11. Examples. (i) For the above function 12 )23()(  zzzf (compare

to 2.6 and 2.9) we have Rez (f ,  ) = 0.

(ii) The value Rez ( )2(2 zz ,  ) = 4 results from the development

)2(2 zz = ...
84

2
2


zz
z

which holds in ),2,0(  . The variant of replacing zz 1 leads to the

same result, but it is based on the development of the function )21(1 zz 

in the crown )21,0,0( , namely
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...842
1

)21(

1 2 


zz
zzz

(iii)  is an essential singular point of ze , and Rez ( ze ,  ) = 0 comes out

from the very definition of the function exp, namely ...
!2!1

1
2


zz

, which

makes sense in the entire C = }0{),0,0(  .

The calculus of the integrals by residues is based on the following:
2.12. Residues Theorem (Cauchy). Let D C be a domain, on which the

function f : DC is derivable, and let D be a closed (simple and

piece-wise smooth) curve. If z1 , z2 , …, zn , are the only univalent isolated
singular points from ( ), i.e. ( ) \ { z1 , z2 , …, zn } D , then

 






n

k
kzfidzzf

1

),(2)( Rez .

Proof. Let k = C(zk , rk), nk ,1 , be disjoint circles (as in Fig.X.2.2), such

that D
n

k
k 















1

)(\)(  . According to Theorem X.1.16, we have

 dzzf )( =  


n

k k

dzzf
1

)(


.

0

D

x z= Re

y z= Im

Fig. X.2.2.









1

2

n

.

nz

2z

1z

By Theorem 2.1, the coefficients ka 1 in the Laurent developments of f

around zk , nk ,1 , have the values


k

dzzf
i

ak


)(

2

1
1

.def

 Rez ( f , zk) .

It is enough to replace 
k

dzzf


)( in  dzzf )( . }
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2.13. Example. Let us evaluate 
n

dzzfIn 
)( , where ),,0(

2
1 nCn

n N* , and    zzzzf 1exp23)(
12 


. The first step is to find out the

singular points of f , and the second one is to establish what singularities
are in ( n); finally, we apply the Residues Theorem, and we make calculus.

Function f is not definable at the points z0 = 0, z1 = 1, z2 = 2, and  . The
nature of these points is: z0 is an essential singularity, z1 and z2 are simple
poles, and  is a regular point. Obviously, )( 00 z , )(},{ 110 zz , and

)(},,{ 210 nzzz  for all 2n , since f is derivable in { ( )2,0(C ). Theorem

2.12 furnishes the following values of the integrals:
I0 = 2 i Rez ( f , 0),

I1 = 2 i [Rez ( f , 0) + Rez ( f , 1)],
I2 = 2 i [Rez ( f , 0) + Rez ( f , 1) + Rez ( f , 2)].

In addition, we have In = I2 for all 2n , and alternatively,
I2 = – 2 i Rez ( f ,  ).

Now, we evaluate the residues. From the development in )1,0,0( ,









 ...

8

7

4

3

2

1
)( 2zzzf 



















 ...

!2

1

!1

1
1

2zz
,

it follows that Rez ( f , 0) = 







1 !

1

2

12

n
n

n

n
= ee  .

Using the formulas for simple poles (see 2.6 and 2.7), we obtain

Rez ( f , 1) = e
z

z

z


 12

)1exp(
, and Rez ( f , 2) = e

z

z

z


 21

)1exp(
.

Finally, because in ),2,0(  we have

f (z) = 







 ...

31
32 zz 



















 ...

!2

1

!1

1
1

2zz
,

it follows that Rez ( f ,  ) = 0. To conclude, we mention the values

 

















.20

12

02

nif

nifei

nifeei

In 



This example obeys the specific restriction in Theorem 2.12, which asks
the singular points of f be either in the interior or in the exterior part of the
(closed) curve from the integral. A natural problem is to find the values of

the integrals 
n

dzzfJn 
)( , where ),1,0(  nCn or 

n

dzzfLn 
)( ,

where }1:{  nyxyixzn , etc. To solve such problems, we

add a couple of improvements to Theorem 2.12:
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2.14. Semi-Residues Theorem. Let the objects D, f ,  , and z1 , z2 , …, zn

satisfy the hypotheses of Theorem 2.12, and in addition, let 0z be a

simple pole of f . If z0 is an angular point of  , where the tangent jumps by
 radians in the positive sense of  , then

 






n

k
kzfidzzf

1

),(2)( Rez + ( – ) i Rez ( f , z0).

In particular, if z0 belongs to a smooth sub-arc of  , then

 






n

k
kzfidzzf

1

),(2)( Rez +  i Rez ( f , z0) .

Proof. The Laurent series of f around z0 has the form

f (z) =
  

)(

010
0

1 ...)(

z

zzaa
zz

a





 ,

where  is derivable in a neighborhood of z0 . Let r be an arc of circle in
such a neighborhood, which isolates z0 as in Fig.X.2.3. Obviously,

rABr  

is a closed (simple, and piece-wise smooth) curve, on which we have

 



r

n

k
kzfidzzf

1

),(2)( Rez .

.

A

B



z0



r

r

(a)

.

A

B



z0



rr

(b)



Fig.X.2.3.

On the other hand, we may decompose this integral in two parts

r

dzzf )( = 
AB

dzzf


)( + 
r

dzzf


)( .

For the first integral we have 
 AB

dzzf
r 

)(lim
0

=  dzzf )( . The second

one can be decomposed in two integrals according to the form of f , namely


r

dzzf


)( =  


r zz

dz
a


0

1 + 
r

dzz

 )( .
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Using the parameterization z = z0 + r tie , ],[ t , of r , we obtain

 r zz

dz


0

= 



dzi = i)(   = i)(   .

Because r is a compact set, and function  is continuous on r , there
exists M = sup { zz :)( r} <  . In addition, the length of r has the

form L = r)(   , hence the property of boundedness (X.1.7) gives


r

dzz

 )( M r)(   0

0


r
.

If we take 0r in all the integrals from above, then we obtain




n

k
kzfi

1

),(2 Rez =  dzzf )( ia )(1    ,

where we have to replace 1a = Rez ( f , z0) .

In particular, if z0 belongs to a smooth sub-arc of  , then there is no jump
of the tangent, i.e.  = 0. }

The values of Jn and Ln from 2.13 are given in Problem 7 at the end.
In the final part of this section we will apply the residues theory to the

real integral calculus. The main difficulty rises from the curves on which
we integrate: the Residues Theorem holds on closed curves, while the real
integrals are defined on parts of R, which are non-closed curves. Therefore

we are interested in constructing closed curves by adding extra curves. The
problem is to control the integrals on these additional curves, which usually
means that we may neglect these integrals in a limiting process:
2.15. Jordan’s Lemma #1. Let D C be a domain, on which the function

f : DC is derivable, and let 0z C be fixed. With vertex z0 we consider

an angle of value  (radians), in which r represents the arc of a circle of
radius r , centered at z0 . We suppose that Dr  holds for all r in a

neighborhood of r0 , where R0r defines a “limit position” of r , (as in

Fig.X.1.4). We claim that if
)()(maxlim 0

0

zfzz
rzrr


 

= 0

then we may neglect the integral on r , i.e.


 r

dzzf
rr 

)(lim
0

= 0 .

Proof. Let us remark that
.not

rM  )()(max 0 zfzz
rz




, which appears in

the hypothesis, makes sense as a finite number, since r is a compact set
and f is a continuous function. We recall that the length of r is Lr = r .
According to Theorem X.1.7, we have
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r

dzzf


)( =  



r

dz
zz

zfzz


0

0 )()(
r

r L
r

M
 = rM .

Re z

Im z

O

Fig.X.2.4.

D

z0

r
z

r0

r
r 0

Using the hypothesis that
   rMrrthatsuch )(0)(0 0

we obtain 
r

dzzf


)(  . }

2.16. Example. Jordan’s Lemma #1 is useful in finding the integrals







0 1 nn
x

dx
I , n N , 2n .

As usually, the first step is to identify the singular points. In this case,

function 1)1()(  nzzf has n simple poles, namely






 
 i

n

k
zk 

12
exp , 1,0  nk .

Let ],[],[ OBAO rr   be a closed curve like in Fig.X.2.5. If we take

r > 1 and 0arg22 zn   , then z0 will be the only pole in (r ). Using

Re z

Im z

O

Fig.X.2.5.

z


r

A z r( = )

B z r e( = )i 



z0



Chapter X. Complex integrals

180

the Residues Theorem, we obtain

 
r

zfidzzf ),(2)( 0Rez = n

i

e
n

i 2
 .

On the other hand, this integral equals a sum of integrals, namely

 
r

dzzf )( 


r

nx

dx
01

+ 
r

dzzf


)( +  ],[
)(

OB
dzzf .

Following the definition of an improper integral, the first term gives

n
r

nr
I

x

dx





 01
lim .

According to the above lemma, applied to f , at z0 = 0, and 0r , we

may neglect the second integral, i.e. 0
1

lim 
 nz z

z
implies

r
lim 

r

dzzf


)( = 0.

Finally, using the parameterization  iez  , ]0,[r , we may reduce

the third integral to the first one:

 ],[
)(

OB
dzzf = 



0

1r nin
i

e

d
e







= 




r

n
i

x

dx
e

01

 .

To conclude, the limit process r leads to
nn nI  sin .

2.17. Jordan’s Lemma #2. Let D C be a domain, for which

{ Dzz  }0: ImC ,

and let the function f : DC be derivable on D, except a finite number of

univalent isolated singular points. If 0)(lim 


zf
z

, then


 rC

zi

r
dzzfe )(lim  = 0 , 0 ,

where Cr is the upper half-circle of radius r, centered at 0.

Proof. Using the parameterization tierz  , ],0[ t , we obtain


rC

zi
not

r dzzfeI )(
.

 = 
 

0

)sin(cos )( dteirerfe titititri .

If r is great enough to include all singularities under Cr , then we may note
.not

rM  max { zzf :)( Cr }, since f is continuous on the compact set Cr .

The property of boundedness for integrals on intervals of R , gives




 

0

sin dtMerI r
tr

r .

Because function sin is symmetric relative to
2
 , this inequality becomes

rI 
2

0

sin2


 dterM tr
r .
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Taking into account that tt

2sin  at each ],0[

2
t , we obtain

rI 
2

2

0
2






dterM
tr

r =  






  rrr M
e

M
 1 .

By hypothesis, r implies 0rM . }

2.18. Example. Let us show that the Heaviside’s function










01

00
)(

tif

tif
t

allows an integral representation, expressed by the following formula

 





i

zti

dz
z

e

i
t

R2

1
)( , 0 .

To prove this equality, we first remark that the integral preserves its value
if we replace R – iby ),[],(    . The definition of this

r

- r
r

- r

O

O

R
_ i 

- 

- 







r
a

r
`Re z

Im z

Re z

Im z

a) b)

Fig.X.2.6.

_

improper integral involves the curve ),[],( rrr    , since

 


i

ztinot
dz

z

e
I

R

.
=  dz

z

e zti

=  r

dz
z

e zti

r
lim .

We construct the closed curve, which we need in the residues theorem, in
different ways, depending on sign t (compare Fig.X.2.6 a) and b)).

Case a) t > 0. If we note  rr
a a

r , then we obtain

 a
r

dz
z

e zti

=













0,2

z

e
i

zti

Rez = i2 .

Case b) t < 0. The interior of  
rr

` `
r contains no singularity, hence

`
r

dz
z

e zti

= 0.

Using the Jordan’s Lemma #2, we neglect the integrals on `
r and a

r .
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2.19. Classes of real integrals. To be calculable by residues, the real
integrals shall have certain particular forms. In practice we have to identify
the class the given integral belongs to, and to apply the specific technique.
A. Improper integrals of rational functions. Let us analyze the integral






 dx
xQ

xP
I

)(

)(
,

where P and Q are polynomials with real coefficients. The existence of this
integral (see § V.2) is assured if

 Q has no real roots, and
 grad Q  grad P + 2 .

We suppose that these conditions are satisfied, and we pursue the technique
of calculating its value.

The starting point is the very definition of an improper integral, which (in
this case) allows the form I = r

r
I


lim , where







r

r

r dx
xQ

xP
I

)(

)(
.

To apply the Residues Theorem, we construct the closed curve

rr rr  ],[ ,

where  r is a half-circle of radius r, centered at 0 (as in Fig.X.2.7).

- r
rO

r

Re z

Im z

Fig.X.2.7.

z1qz 2z…

Let z1, z2, … , zq be the roots of Q , where grad Q = 2q, in the upper half-
plane }0:{  zz ImC . These points are poles of the complex function f , of

values
)(

)(
)(

zQ

zP
zf  . If r is great enough, all these poles are in (r ), hence

 



r

q

k
kzfidzzf

1

),(2)( Rez ,

where the right-hand member does not depend on r. What remains is to
decompose this integral on the sub-arcs ],[ rr  and  r , and to take r ,

since the Jordan’s Lemma #1 operates on  r .
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B. Integrals of rational functions in sin and cos. Let us evaluate


2

0

)cos,(sin dtttJ R ,

where R is a (real) rational function. Based on the Euler’s relations

i

ee
t

titi

2
sin


 ,

2
cos

titi ee
t


 ,

we may change the variable tiezt  , ]2,0[ t . Because this change of

variables represents a parameterization of the unit circle, we obtain

 )1,0( )(

)(
C

dz
zQ

zP
J ,

where P and Q are polynomials with real coefficients. The value of J comes
out by the Residues Theorem for the poles in the interior part of C (0, 1).
C. Improper Integrals of a rational function times cos (or times sin).
Let us consider integrals of the form






 dxxxRKc cos)( , 




 dxxxRKs sin)( ,

where R = P/Q is a rational function for which grad P < grad Q , and  > 0.
In addition we suppose that Q has no roots in R, and R is an even function

in Kc , respectively odd in Ks . In practice, if Kc is given, possibly on [0,  ),
then Ks = 0 because of parity, and vice versa. Therefore we may combine
Kc and Ks in a complex integral of the form

 R
dxxReK xi )(







r

r

xi

r

def

dxxRe )(lim
.

 .

To obtain a closed curve, we construct r = rCrr  ],[ , where Cr is the

upper half-circle of radius r, centered at 0 (as in Lemma 2.17). Let us note
by z1, z2, … , zq the roots of Q in the upper half-plane (compare to class A).
These points are poles of the integrated function, which are contained in the

interior of r whenever r > max { qkzk ,1:  }. Theorem 2.12 gives

r

dzzRe zi )( = 


q

k
k

zi zzRei
1

)),((2  Rez ,

where the right-hand term is independent of r. If we decompose

r

dzzRe zi )( = 


r

r

xi dxxRe )( + 
rC

zi dzzRe )( ,

then the limit r avoids the integral (see Lemma #2), and we obtain

K = 


q

k
k

zi zzRei
1

)),((2  Rez .
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The reader may find examples of such integrals at the end of the section.
There are many other types of integrals (e.g. with multi-valued functions),
for which we recommend a larger bibliography. To be more convincing
about the advantages of using the Cauchy theory, we conclude by several
remarkable real integrals, which are easily obtained by residues techniques.
2.20. Remarkable integrals. (a) The Poisson’s integral is defined by






0

sin
dt

t

t
P .

Using the parity of (sin t) / t, and changing the variable, we obtain






0

sin
)( dt

t

t
PP


 = R dt

t

tsin

2

1
.

According to the Euler’s formula for sin, the problem reduces to the
Heaviside’s integral, and the result is P =  / 2 .

(b) There is a remarkable integral of class C in 2.19, namely

L = 


0
22

cos
dt

t

t


,  > 0,

which is known as Laplace’s integral. Combining with the corresponding
integral of sin, we obtain

L = 
R

dt
t

e ti

222

1


.

Because i is the only (simple) pole in the upper half-plane, the study of
the above mentioned class C leads to the value

L = ),(
22




 i
z

e
i

zi


Rez = 



 e
2

.

(c) Knowing the Gauss’ integral G =
2

0

2 



 dte t , we can evaluate

F = 


0

2cos dxx = 


0

2sin dxx =
22

1 
,

which are called Fresnel’s integrals. In fact, if r is the contour from 2.16,

for  =  / 4, then r

dze zi 2

= 0. Integrating by parts in the corresponding

real integral, it follows (without Lemmas #1 or #2) that 0
2




r

zi

r

dze


.

The integral on [O, A] tends to G, and a change of variables in the integral
on [B, O] leads to G too.
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PROBLEMS §X.2.

1. Write Laurent series for the following functions in the specified crowns:

(1)   123 23


 zzz , )2,1,0( ; (2)
12

1

z

e z

, )1,0,0( ; (3)
1

1
sin





z

z
, ),0,1(  .

Hint. (1) Compare to 2.4. (2) Multiply the series of exp by a geometric one.

(3) Decompose 











1

2
1sin

z
, then write the series of sin and cos.

2. Develop the following functions in Laurent series around  :

(i)
1

1
2

2





z

z
; (ii)

1100

99

z

z
; (iii) 11 )(sin  z .

Hint. (i)
)1(1

12
1

22 zz 
 ; (ii)

)1(1

11
100zz 

 ; (iii) Transform the series of

z1sin around 0.

3. Find the residues of the following functions at the specified points:

(a) Rez (
22

1
23 



zzz

z
, i ); (b) Rez ( z2sin , 0); (c) Rez (

4

sin

z

z
, 0);

(d) Rez (
z1

1
sin , 1); (e) Rez (

z

z

1
sin , 0); (f ) Rez (  )1(1exp z , );

(g) Rez (
1

1
sin

z
, ); (h) Rez ( ,

sin
5

2

z

z
 ); (i) Rez (

z

z

cosh1

2cos


, 0) .

Hint. Directly use 2.6, 2.7 in (a) and (b). (c) Prolong
z

zsin
to a derivable

function. For (d) and (e), use the definition of sin. (f ) In the series of exp,
each term is the sum of a series; identify the coefficient of 1/z. (g) Similarly
to (f ), use the series of sin and identify the coefficient of 1/z in












...

111
sin

1
sin

321

1

zzz
z

z .

(h) Use the development
5

2cos1

z

z
= ...

45

41

3

22
3

 z
zz

. (i) Divide the

series of z2cos by that of zcosh1 .

4. Study whether the residues always vanish at regular points. Establish the
nature of  , and (if any) find the corresponding residue of the functions:

12 )(  cbzaz ; 1/z ; e z ; sin –1 z ; ze
1

; sin (1/z) ; z .
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Hint. According to Remark 2.5, Rez ( f , z0) = 0 whenever z0 , is a regular
point at finite distance. Otherwise, Rez ( f ,  ) is not necessarily null, e.g.

Rez (1/z ,  ) = – 1 . Rez (sin –1 z ,  ) and Rez ( z ,  ) make no sense.

5. Use the Residues Theorem to evaluate the complex integrals:

 )4,0( 2 sinC zz

dz
; 

),0( 2
2
1

1

)1(C
dz

z

e z

;  

)1,0(

2 21
1

C
dzez z ;  )1,0(

1cosh
C z

n dzz .

Hint. Find the poles and the essential singularities in the interior part of the
mentioned circles, and evaluate the corresponding residues.

6. Let f : DC be a derivable function, which has only a finite number of

univalent isolated singular points, say z1 , z2 , …, zn . Show that

Rez ( f ,  ) + 


n

k
kzf

1

),(Rez = 0.

Use this fact to evaluate I = 
),( 10

0 1rzC z

dz
, where 001.00 z , and r = 1.

Hint. If R > max { nkzk ,1:  }, then C(0, R) D = C \ {z1 , z2 , …, zn }, so

the Residues Theorem gives

 



),0(

1

),(2)(
RC

n

k
kzfidzzf Rez .

Compare to the definition of the residue at  , which shows that

 
),0(

)(),(2
RC

dzzffiRez .

Function   110 1)(


 zzf , from I, has ten simple poles, namely the roots

of order 10 of 1,
10

2
sin

10

2
cos

 k
i

k
zk  , 9,0k . Except z0 = 1, the other

nine poles lie in the interior of C( – 0.001, 1). Instead of evaluating the nine
residues at these poles, it is easier to write I = Rez ( f ,  ) + Rez ( f , 1) .

7. Evaluate the integrals Jn and Ln from Example 2.13, n N .

Hint. The circles )1,0(  nCn from Jn are smooth curves, hence we use

2.14 with  = 0. The curves n in Ln are squares, hence we take  =  /2.
The calculus indicated by Theorems 2.12 and 2.14 leads to the values

 

















20

1

02

nif

nifei

nifeei

Jn 



and

 


















.20

1

02

2
3

2
3

nif

nifei

nifeei

Ln 
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8. Evaluate the improper integrals

I = 






0
4

2

1

1
dx

x

x
; J = 



  222 )( ax

dx
, a > 0.

Hint. Use the method described in 2.19 A. To find I = 2 , evaluate the

residues at the simple poles
2

1 i
. In the upper half-plane, the function

from J has a double pole at ai.

9. Find the values of the following real integrals by means of residues:

I =  



0
2cos2 t

dt
; J = 








2

0
2cos21 aa

d
, )1,0(a .

Hint. Apply the scheme from 2.19 B. For I, the only (simple) pole in the

unit circle is 1 – 2 . For J, the corresponding pole is a .

10. Evaluate the integrals

I = 


0
22 )1(

cos
dx

x

x
; J = 



0
22

sin
dx

bx

axx
, ba, R .

Hint. The integrals belong to class 2.19 C. In the case of I there is a double
pole at i. J vanishes for a = 0, and it J reduces to the Poisson’s integral for
b = 0, hence we may restrict the problem to a, b > 0.
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Index

A
absolutely convergent
- improper integral in R 13

anti-derivative 49
area
- of a domain 56, 62
- of a surface 94

B
Bernoulli 52
binomial integral 29

C
canonic
- basis 120
- form of a curve 35
Cartesian
- coordinates 74, 130, 138
- decomposition 66
- equations 130
Cauchy test
- for improper integrals on R 12

- formulas 163
- integrals with parameter 23
- theory 155, 165, 173
changing the variables
- in improper integrals 12
- in multiple integrals 71
- on a surface 92
coefficients
- differential 132
- Lamé 132
comparison test
- for integrals in R 14-17

- integrals with parameter 23
concatenation 36
continuous
-curve 33
- surface 91

convergence
- boundedness criterion 84
- of a multiple integral 82
- uniform 22
coordinates
- Cartesian 130
- change of 130
- curve 130
- curvilinear 130
- cylindrical 130
- polar 73
- spherical 73
- surface 130

D
D”Alembert 155, 165
Darboux 62
definite integral
- relative to a parameter 25
- with parameter 1
divergence 113
division
- of a curve 33, 39
- of a domain 63
domain
- closed, compact 62
- m.c.d. 62, 94
- regular 112
- simple 68
- simply connected 160
- star-like 50, 145
double integral 64

E
elementary body 56
Euler functions 27
Euler-Poisson integral 29
exhausting a domain 82
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F
field
- bi-scalar 145
- conservative 49
- fundamental 121
- harmonic 147
- irrotational 49, 143
- solenoidal 143
- vector 104, 120
- without sources 143
flux-divergence formula 113
Fresnel 184
function

- gamma (Euler) 27
- beta (Euler) 27

G

Gauss 95, 184
Gauss-Ostrogradski 112, 124
Green 75
Green-Riemann 52

H
Hamilton 121
Heaviside 181

I
implicit equation
- of a surface 92
improper integral
- in R 9

- multiple 82
- rational functions 182
- relative to a parameter 26
- with parameter 22
integration
- by parts 12
- complex 156
intrinsic
- property of a curve 35
- property of a surface 92
iteration 69

J
Jacobi 71, 91
Jordan 56, 178

L

Lamé 132
Laplace 122, 128, 137, 153, 184
Laurent 168
Lebesgue 56
Leibniz-Newton formula
- for improper integrals on R 11

length
- of a curve 33, 158
- of a vector 119
Liouville 164
Lipschitz
- curve 33
- surface 91

M
mean-value 65
measurable
- compact domain (m.c.d.) 62
- in Jordan’s sense 57
- surface 94
measure
- interior / exterior 57
- Jordan 56
Möbius 106
multiple integrals 63

N
nabla 121
negligible set 58
Newton 54, 143
non-circulatory 116
non-compact sets
- integral on 10
non-singular surface 91
norm
- of a division 63, 155
normal vector 93, 130
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O
operator
- del 121
- differential 119, 137
- nabla 121
orientated
- border 114
- curves 35, 158
- surfaces 105

P
parallelepiped 56
paralleloid 56
parameterization
- complex 155
- equivalent 34, 92
- of a curve 33
- of a surface 91
part
- interior / exterior 106
- positive / negative 85
- regular / principal 170
- vector 120
point
- angular 177
- critical 37
- intermediate 39
- singular 172
Poisson 31, 184
pole 172
potential
- scalar 47
- vector 145
Principal value 18, 87
projection 68
p-volume 56

R
rectifiable curve 33
regular
- surface 91
- domain 112

residue 171, 174
- semi-residues 177
Riemann integral 40, 62, 155
rotation
- of a vector field 49, 113

S
Schwartz 98
section 68
series
- reduction to 17
smooth
- curve 33
- piece-wise 33
- surface 91
Stokes 114
sum
- line integral 40, 44
- multiple integral 63
- surface integral 95, 99, 107

T
tangent bundle 120
tangent plane
- to a surface 92
tangent space 119
tangent vector
- to a curve 33, 130
- to the space 120
total differential 47
triple integral 64

V
variation
- bounded 33

W
Weierstrass 165
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